## E-Z EXCAVATING LLC.

2358 HWY# 23 MORA MN. 55051 Ph. 320-679-4031 Cell 320-241-7036

## DESIGN

**LOCATION:** XXXXXX HWY 65 McGREGOR MN. PID# 30.0.027400 & 30.0.027500

**OWNER:** MILLE LACS BAND OF OJIBWE SYSTEM TYPE: TYPE III MOUND

**DESIGN FLOW:2450 GPD** 

TREATMENT AREA: 10'X204' 2040 SQ.FT. **MOUND SIZE:** 40.8' X 232.4' **SLOPE: 2%** 

SEPTIC TANKS: 3-2500 gal. COMBO/SPLIT FILTER: YES 3- POLYLOC

PUMP TANK: 5000 gal.

**PUMP:** GOULDS WE2012H

FLOW METER/ TIMER/ ALARM: SJE-RHOMBUS **TD1W114H8AC10EK21E** 

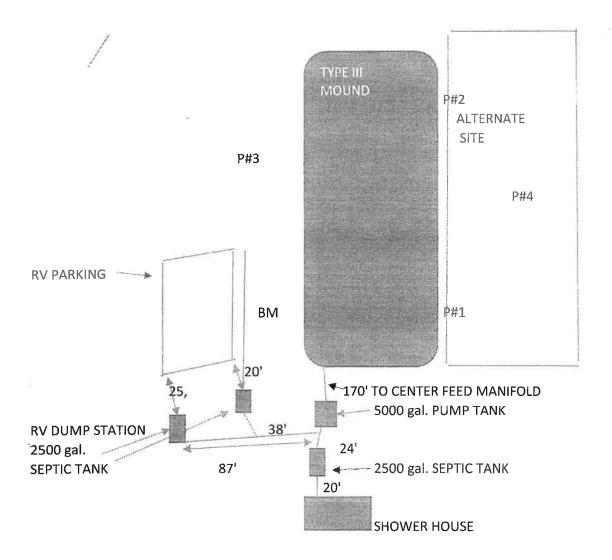
muy # 1472 7/14/15

## **DESIGN NOTES**

## TYPE III MOUND SYSTEM: FLOW CALCULATIONS

9 RV SITES WITH FULL HOOKUPS @ 100 GPD. = 900 GPD. 24 CAMP SITES NO HOOKUPS WITH SHOWER HOUSE AND DUMP STATION @ 63 GPD. = 1512 GPD. TOTAL CALCULATED FLOW 2412 GPD. SYSTEM DESIGNED FOR 2450 GPD. WITH TIMED DOSING

SHOWER HOUSE IS SHOWERS ONLY NO TOILETS PORTABLE RESTROOMS WILL BE SET UP DURING EVENTS


## Site Elevation Sheet

### LOCATION

| BENCHMARK LOCATION:                 | STAKE BETWEEN MC | OUND AND RV PAI | RKING        | ELEVATION 100.00 |
|-------------------------------------|------------------|-----------------|--------------|------------------|
| TANK #1 DUMP STATION                | surface 96.10    | inlet 94.25 C   | OUTLET 94.00 |                  |
| TANK #2 RV HOOKUPS                  | surface 97.00    | inlet 94.25 O   | UTLET 94.00  |                  |
| TANK #3 SHOWER HOUSE                | surface 97.30    | inlet 93.25 O   | UTLET 93.00  |                  |
| PUMP TANK                           | surface 97.49    | inlet 92.66 (   | OUTLET 92.50 | )                |
| ROCK BED SURFACE                    |                  |                 |              |                  |
| N.E. 97.85                          |                  |                 |              |                  |
| N.W. 97.65                          |                  |                 |              |                  |
| S.E. 97.85                          |                  |                 |              |                  |
| S.W. 97.70                          |                  |                 |              |                  |
| BERM SURFACE                        |                  |                 |              |                  |
| N.E. 98.15                          |                  |                 |              |                  |
| N.W. 97.30                          |                  |                 |              |                  |
| S.E. 97.40                          |                  |                 |              |                  |
|                                     |                  |                 |              |                  |
| S.W. 97.30                          |                  |                 |              |                  |
| S.W. 97.30<br>SAND TO ROCK BED INTE | RFACE ELEVATION: | 100.85          |              |                  |
|                                     | RFACE ELEVATION: | 100.85          |              |                  |
| SAND TO ROCK BED INTE               |                  | 100.85          |              |                  |
| SAND TO ROCK BED INTE               | REDOX 96.54      | 100.85          |              |                  |



## NOT TO SCALE



ä.,

FIELD EVALUAT CIL

| ADDRESS:<br>LEGAL DESCRIPTION                                           |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                            |           |
|-------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------|-----------|
| PINE 30.0.02740                                                         | 0 and 500 SEC_                                                | 19 47 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PNAME               | OHWL                                                       |           |
| FIRE#LAKE/                                                              |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CL-58               | OHWL                                                       |           |
| DESCRIP<br>DISTURBED AREAS<br>COMPACTED AREAS<br>FLOODING               | TION OF SOIL TREA<br>AREA #1<br>YES_XNO<br>YES_NO<br>YES_NO K | AREA ::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     | SM ELEV. <u>100</u><br>BM DESCRIPTION<br><b>CC By Moun</b> | 1         |
| RUN ON POTENTIAL                                                        | YES_NOX                                                       | YES HOY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                                                            |           |
| SLOPE %<br>DIRECTION OF SLOPE<br>LANDSCAPE POSITION<br>VEGETATION TYPES | a construction and the second                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                            |           |
| DEPTH TO STANDING                                                       | WATER OR MOTTL                                                | ED SOIL: PICK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *1(8)" +2 (8"       | 1+2 (21) +41 (2                                            | )         |
|                                                                         | /CEIDER C                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                            |           |
| BOTTOM ELEVATION-                                                       | FIRST TRENCH OR                                               | BOTTOM OF PLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u> </u>            | Frank H2                                                   |           |
| SOIL SIZING FACTOR:                                                     | SITE # 1 .68                                                  | station and statio | . 68                |                                                            |           |
| CONSTRUCTION RELAT                                                      | ED ISSUES:                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                            |           |
|                                                                         |                                                               | 2 8 C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | / .                 | / -                                                        |           |
| LIC# <u>1472</u>                                                        | SITE EVALUATO                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | turn the            | wy                                                         |           |
| SITE EVALUATOR NAME                                                     | KEVIN HERN                                                    | sia //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E EPHONE# 32        | 0 -241-7036                                                | harring a |
| LUG REVIEW                                                              | 1                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ي.<br>جو پي يلغو في |                                                            |           |
| Comments                                                                |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                            |           |
|                                                                         |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                   |                                                            |           |
|                                                                         | SOIL BORIN                                                    | GLOGS OL REV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.508               |                                                            | AGUNT.    |
|                                                                         |                                                               | ATTACHED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |                                                            |           |

Form des 2/20/98

## University of Minnesota Site Evaluation Forn 5/16/2005



| <b>Property Owner(s)</b>        | MILLE LACS B       | AND OF OJIB         | WE                               | Phone Numb                              | per 320-532-4    | 181          |
|---------------------------------|--------------------|---------------------|----------------------------------|-----------------------------------------|------------------|--------------|
| Address <u>3XXXX HWY</u>        |                    |                     |                                  |                                         |                  |              |
| P.I.D. <u>30.0.027400</u> &     |                    | Section             |                                  | · · _ · · · · · · · · · · · · · · · · · | N Range          | 23           |
| Date <u>7/14/2015</u>           |                    | Time 2PM            | Weather conditi                  | ons OVERCAST                            |                  |              |
| Location Information            | shoreland          |                     | dwelling                         |                                         | replacement      | t system     |
| (check all that apply)          | protection area    |                     | $\underline{X}$ other establishm | ent                                     | new home c       | construction |
| <b>Homeowner Information</b>    |                    |                     |                                  |                                         |                  |              |
| No. of bedrooms (if applicable) | NONE               | bedrooms (inclu     | ides possible addition           | ns)                                     |                  |              |
| No. of residents in home        | adults             | children            |                                  |                                         |                  |              |
| Estimated flow                  | 2450               | gpd                 |                                  |                                         |                  |              |
| Well casing depth               | N/A                | feet                |                                  | Discharge location if che               | ecked            |              |
| Water using devices (check)     | Garbage disposal   |                     | Water softener                   |                                         |                  |              |
|                                 | Dishwasher         |                     | <br>Sump pump                    |                                         |                  | -            |
|                                 | Large bathtub      |                     | High eff. furnace                |                                         | a 7              | -            |
|                                 | Laundry/large tub  | o on 2nd floor      | Jucuzzi/hottub                   |                                         |                  |              |
| Water use concerns (check)      | Toilet/faucet leak | s Max load lau      | ndrv/day                         | Long term prescriptio                   | n medications    |              |
|                                 | Home business      |                     | Antibact. soap                   | Frequent parties or ou                  |                  | .c           |
|                                 |                    |                     |                                  | requent parties of of                   | it of town guest | .5           |
| Soil Data                       |                    |                     |                                  |                                         |                  |              |
| Soil texture classification:    | FINE SANDY LOA     |                     |                                  |                                         |                  |              |
| Unnatural soil (check)          | X Yes              | No                  |                                  |                                         |                  |              |
| Type of observation (check)     | Probe              | X Pit               | Boring                           |                                         |                  |              |
| Parent material (check)         | Till               | X Outwash           | Loess                            | Bedrock                                 | Alluvium         |              |
| Vegetation type (check)         | Wet                | Dry                 | X Unknown                        |                                         |                  |              |
| Slope form (check)              | X Summit           | Shoulder            | Back                             | Foot                                    | Toe              |              |
| Drainage (check)                | Good               | X Fair              | Poor                             | Ponding                                 | Flooding         |              |
| Located in floodplain (check)   | Yes                | X No                |                                  | · · · · · · · · · · · · · · · · · · ·   |                  |              |
|                                 |                    |                     |                                  | Soil Survey Data                        | Soil #1          | Soil #2      |
| Site Summary Data               |                    |                     |                                  | Map unit sym & name                     | DULUTH           | DULUTH       |
| Standing water:                 |                    | inches              |                                  | Landscape position                      | SUMMIT           | SUMMIT       |
| Bedrock:                        |                    | inches              |                                  | Flooding                                |                  |              |
| Saturated soil:                 | 8                  | inches              |                                  | Slope                                   | 1 - 6%           | 1-6%         |
| Maximum depth of system:        | 0                  | inches              |                                  | Watertable depth                        |                  |              |
| Max elevation at system bottom: | 100.85             | feet                |                                  | Bedrock depth                           |                  |              |
| Soil sizing factor (SSF):       | 0.68               | gpd/ft <sup>2</sup> |                                  | Possible system depth                   | 0                | 0            |
| Linear loading rate (LLR):      | 12                 | gpd/ft              |                                  | Texture at depth                        | FSL              | FSL          |
| Was a perc test done ?          | Yes                |                     | mpi                              | Permeability (P)                        |                  |              |
|                                 | X No               |                     |                                  | Perc(MPI) = 60 / P                      |                  |              |
|                                 |                    |                     |                                  | NRCS onsite suitability                 | V. LIMITEI       | V. LIMITED   |

#### Soil Boring Data

| Boring 1 Elevation:          |                  | Location |                |           | the state of the second |
|------------------------------|------------------|----------|----------------|-----------|-------------------------|
| Soil Horizons Depth (inches) | Texture          |          | Color          | Structure | Consistence             |
|                              | FIELD MIXED SOIL | 10YR 3/3 |                | NONE      | FRIABLE                 |
| 8"-12"                       | SANDY CLAY LOAM  | 10YR4/3  | REDOX 7.5YR4/4 | PLATY     | FIRM                    |
| ,                            |                  |          |                |           |                         |
|                              |                  |          |                |           |                         |
|                              |                  |          |                |           | Ē.                      |

| Texture          | Color                   | Structure | Consistence                   |
|------------------|-------------------------|-----------|-------------------------------|
| FIELD MIXED SOIL | 10YR3/3                 | NONE      | FRIABLE                       |
| SANDY CLAY LOAM  | 10YR4/3 REDOX 7.5 YR4/4 | PLATY     | FIRM                          |
|                  |                         |           |                               |
|                  |                         |           |                               |
|                  | FIELD MIXED SOIL        |           | FIELD MIXED SOIL 10YR3/3 NONE |

|                    | iversit<br>Iinnesc             |                   | OSTP Soil (             | Observatior                | Log                           |                                | v 11.3.28   | Date                 | 7/14/2015<br>2PM |     |
|--------------------|--------------------------------|-------------------|-------------------------|----------------------------|-------------------------------|--------------------------------|-------------|----------------------|------------------|-----|
| Cl                 | ient/ Address                  | :                 |                         |                            |                               | Land                           |             |                      |                  |     |
| Legal Desc         | ription/ GPS                   | PID 30.0.         | 027400 £ 500            |                            |                               |                                | Vegetation  |                      | IAY FIELD        |     |
|                    | nt materials<br>. that apply)  | 🖸 Outw<br>🗹 Till  | ash 🔲 Lacustrine        | Loess<br>edrock Organic    |                               | n #/Location:<br>vey map units |             | 3<br>Slope shape     | Slope%           | 2.0 |
| Depth (in)         | Texture                        | Coarse<br>Frag. % | Matrix Color(s)         | Mottle Color(s)            | Redox Kind(s)                 | Indicator(s)                   |             | I Structure<br>Grade |                  |     |
| PLOWED<br>SOIL 0-8 | fine sandy<br>loam             | 5                 | 10YR3/3                 |                            |                               |                                | Granular    | Structureless        | Friable          |     |
| 8-12               | sandy clay<br>loam             | 5                 | 10YR4/3                 | 7.5YR4/4                   | Concentrations,<br>depletions | S4                             | Platey      | Weak                 | Firm             |     |
|                    |                                |                   |                         |                            |                               |                                |             |                      |                  |     |
|                    |                                |                   |                         |                            |                               |                                |             |                      |                  |     |
|                    |                                |                   |                         |                            |                               |                                |             | I                    |                  |     |
|                    |                                |                   |                         |                            |                               |                                |             |                      |                  |     |
|                    |                                |                   | NPACTED SOILS           |                            |                               |                                |             |                      |                  |     |
|                    | fy that I have o<br>VIN HERWIG |                   | this work in accordance | e with all applicable ordi | nances, rules and             | aws.                           | 1472        |                      | 7/14/20          | 15  |
|                    | (Designer)                     |                   | 1.1                     | (Signature)                |                               |                                | (License #) | 6                    | (Date            | )   |

| Un<br>of M         | iversit <sup>.</sup><br>Iinneso                              | Y<br>TA           | OSTP Soil C                              | )bservation            | Log                           |                | v 11.3.28            | Date          | 7/14/2015<br>2PM |      |
|--------------------|--------------------------------------------------------------|-------------------|------------------------------------------|------------------------|-------------------------------|----------------|----------------------|---------------|------------------|------|
| cı                 | lient/ Address:                                              | ×                 |                                          |                        |                               | ] Land         | -<br>Iscape position |               | SUMMIT           |      |
| Legal Desc         | cription/ GPS                                                | PID 30.0.         | 027400                                   |                        |                               |                | Vegetation           |               | IAY FIELD        |      |
|                    | nt materials<br>l that apply)                                | 🗌 Outw            | ash 🔲 Lacustrine                         | Loess<br>drock Organic |                               | on #/Location: |                      | 4             | Slope% 2.0       |      |
|                    |                                                              |                   |                                          |                        | Soil sur                      | vey map units  |                      | Slope shape   |                  |      |
| Depth (in)         | Texture                                                      | Coarse<br>Frag. % | Matrix Color(s)                          | Mottle Color(s)        | Redox Kind(s)                 | Indicator(s)   | Shape                | Grade         | eI<br>Consiste   | ence |
| PLOWED<br>SOIL 0-8 | fine sandy<br>loam                                           | 5                 | 10YR3/3                                  |                        |                               |                | Granular             | Structureless | Friable          |      |
| 8-12               | sandy clay<br>loam                                           | 5                 | 10YR4/3                                  | 7.5YR4/4               | Concentrations,<br>depletions | S4             | Platey               | Weak          | Firm             |      |
|                    | -                                                            |                   |                                          |                        |                               |                |                      | -             |                  |      |
|                    |                                                              |                   |                                          |                        |                               |                |                      |               |                  |      |
| I hereby cert      | OLD PLOWED<br>ify that I have o<br>EVIN HERWIG<br>(Designer) | FIELD COA         | APACTED SOILS<br>this work in accordance | Kanus                  | nances, rules and             | laws.          | 1472                 |               | 7/14/20          |      |
|                    | (Designer)                                                   | *.e*              |                                          | (Signature)            | 2                             |                | (License #)          |               | (Date            | ?)   |



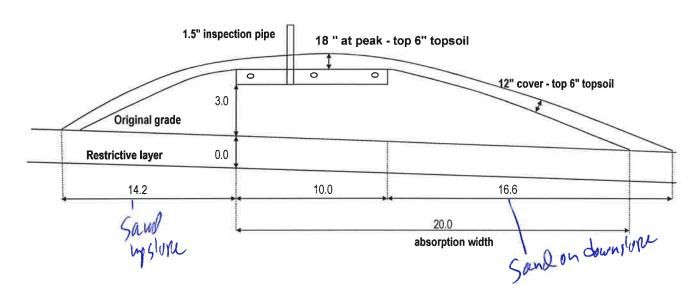
# University of Minnesota Mound Design Worksheet Greater than 1% Slopes

| lorouto    |                                                                                  |                         |                       |                          |                 |     |
|------------|----------------------------------------------------------------------------------|-------------------------|-----------------------|--------------------------|-----------------|-----|
| Α.         | FLOW                                                                             |                         |                       |                          |                 |     |
| <b>~</b> . | Estimated                                                                        |                         | 2450                  | gpd (see figure A-1)     |                 |     |
|            | or measured                                                                      |                         | 2400                  | x 1.5 (safety factor) =  | 0               | gpd |
|            | or meddated                                                                      |                         |                       |                          |                 | gpu |
| В.         | SEPTIC TANK LIQUID VOLUMES                                                       |                         |                       |                          |                 |     |
|            | Septic tank capacity                                                             |                         | 7500                  | gallons (see figure C-1) |                 |     |
|            | Number of tanks/compartments                                                     |                         | 6                     |                          |                 |     |
|            | Effluent Filter (yes/no)                                                         |                         | YES                   | -                        |                 |     |
|            |                                                                                  |                         |                       | _1                       |                 |     |
|            | C-1 Septic Tank Capacity in Gallons                                              |                         |                       | 1                        |                 |     |
|            | Number of Minimum C                                                              | apacity with            | Capacity with         | 1                        |                 |     |
|            | Bedrooms Capacity (                                                              | Garb. Disp.             | Disp. and Lift        |                          |                 |     |
|            | 2 or less 750                                                                    | 1125                    | 1500                  | 1                        |                 |     |
|            | 3 or 4 1000                                                                      | 1500                    | 2000                  |                          |                 |     |
|            | 5 or 6 1500                                                                      | 2250                    | 3000                  |                          |                 |     |
|            | 7, 8 or 9 2000                                                                   | 3000                    | 4000                  |                          |                 |     |
| C.         | SOILS (Site evaluation data)                                                     |                         |                       |                          |                 |     |
| 1.         | Depth to restricting layer=                                                      |                         | 0.0                   | feet                     |                 |     |
| 2.         | Depth of percolation tests =                                                     |                         | 0.0                   | inches                   |                 |     |
| 3.         | Texture                                                                          |                         | FSL                   |                          |                 |     |
| 4.         | Soil loading rate (see Figure D-33)                                              |                         | 0.68                  | gpd/ ft <sup>2</sup>     |                 |     |
| 4.         | Percolation rate                                                                 |                         | 0.00                  |                          |                 |     |
| 5.         | % Land Slope                                                                     |                         | 2.0                   | MPI<br>%                 |                 |     |
| 0.         | to Land Clope                                                                    |                         | 2.0                   | /0                       |                 |     |
| D.         | ROCK LAYER DIMENSIONS                                                            |                         |                       |                          |                 |     |
| 1.         | Multiply average design flow (A) by 0.83 to obtain requi                         | red area of rock        | laver: Item A x 0.83= |                          |                 |     |
|            |                                                                                  |                         |                       | 0                        |                 |     |
|            | 2450gpd x 0.                                                                     | 83 ft²/gpd =            |                       | ft <sup>2</sup>          |                 |     |
| 2.         | Determine rock layer width = 0.83 ft <sup>2</sup> /gpd x Linear Load             | ling Rate (LLR)         | (see LLR chart)       |                          |                 |     |
|            | 0.83 ft <sup>2</sup> /gpd x                                                      | 0 ( )                   | 12.00                 | = 10.0                   | ft              |     |
|            |                                                                                  |                         |                       |                          |                 |     |
|            | LLR Ch                                                                           |                         | 1                     | -                        |                 |     |
|            | Perk Ra<br><120 Mi                                                               |                         | LLR                   | -                        |                 |     |
|            | >=120 M                                                                          |                         | <=12<br><=6           |                          |                 |     |
| _          |                                                                                  |                         |                       |                          |                 |     |
| 3.         | Length of rock layer = area divided by width =                                   |                         |                       |                          |                 |     |
|            | <u>    2040.0     </u> tt <sup>2</sup>                                           | 1                       | 10.0                  | feet =204.0              | _ft             |     |
| E.         | ROCK VOLUME                                                                      |                         |                       |                          |                 |     |
| 1.         | Multiply rock area by rock depth to get cubic feet of rock                       |                         |                       |                          |                 |     |
|            | 2040.0                                                                           | X                       | 1.0                   | ft = 2040.0              | ft <sup>3</sup> |     |
|            | 2010.0                                                                           | X                       |                       |                          |                 |     |
| 2.         | Divide ft <sup>3</sup> by 27 ft <sup>3</sup> /yd <sup>3</sup> to get cubic yards |                         |                       |                          |                 |     |
| 2.         |                                                                                  | 07 -                    | 75.0                  |                          |                 |     |
|            | ft <sup>3</sup> /                                                                | 27 =                    | 75.6                  | _yd <sup>3</sup>         |                 |     |
| 3.         | Multiply cubic yards by 1.4 to get weight of rock in tons;                       |                         |                       |                          |                 |     |
| э.         |                                                                                  | 1 1 40-1-3              | _                     | 105.0                    |                 |     |
|            | 75.6yd <sup>3</sup> X                                                            | 1.4 ton/yd <sup>3</sup> |                       | 105.8tons                |                 |     |

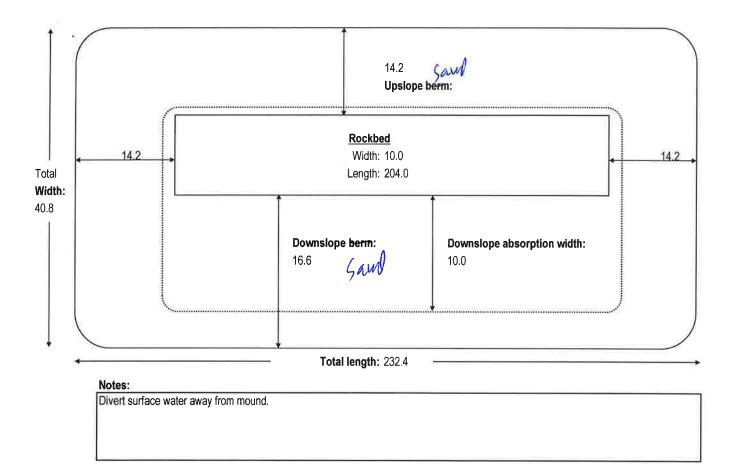
Job #[

| ABSORPTION WIDTH<br>Absorption width equals         |                                                | Absorption ratio:          | 2                        |                    |                        |                         |
|-----------------------------------------------------|------------------------------------------------|----------------------------|--------------------------|--------------------|------------------------|-------------------------|
| 2.00                                                | X X                                            | 10.0                       | ft =                     | 20,0               | ft                     |                         |
|                                                     |                                                |                            |                          | ·                  | • .                    |                         |
| MOUND SLOPE WIDTI                                   |                                                |                            |                          |                    |                        |                         |
| Downslope absorption v                              |                                                | •                          |                          | 10.0               | <i>L</i> 1             |                         |
| 20.0                                                | _feet -                                        | 10.0                       | feet =                   | 10.0               | ft                     |                         |
| Calculate mound size UPSLOPE                        |                                                |                            |                          |                    |                        |                         |
| a. Depth of clean sand a                            | at upslope edge of roc                         | k layer = 3 feet minus d   | istance to restricting   | layer(C1)          |                        |                         |
| 3.0                                                 | ft                                             | 0.0                        | ft =                     | 3.0                | ft                     |                         |
| h Mariahi aitha i                                   | valana adaa af vaale l                         | aver - darth of alarma     | ad for a second in a (O) | 0-)                |                        |                         |
| b. Mound height at the u<br>at upslope edge plus de |                                                |                            |                          | 2a)                |                        |                         |
| at upsiope edge plus de                             |                                                | 3 ft + 1ft + 1 ft =        | 5.0                      | ft                 |                        |                         |
|                                                     |                                                |                            |                          |                    |                        |                         |
| c. Upslope berm multipli                            |                                                | ,                          |                          |                    |                        |                         |
|                                                     | Selected berm mult                             | iplier:                    | 2.83                     |                    |                        |                         |
| d I Inglang width — hann                            |                                                |                            | (O0h)                    |                    |                        |                         |
| d. Upslope width = berm                             | 2.83                                           | upsiope mound neight(<br>x | (G2D):<br>5.0            | ft =               | 14.2 ft                |                         |
|                                                     | 2.00                                           | - ^                        | 0.0                      |                    | <u>    14.2    </u> 11 |                         |
| DOWNSLOPE                                           |                                                |                            |                          |                    |                        |                         |
| e. Drop in elevation = ro                           | ck layer width (D2) tin                        | nes percent landslope(C    | :5) / 100                |                    |                        |                         |
|                                                     | 10.0                                           | _ft x                      | 2.0                      | % / 100 =          | ft                     |                         |
| f. Downslope mound hei                              | ight = depth of clean s                        | and for slope difference   | e (G2e)                  |                    |                        |                         |
| at downslope rock edge                              |                                                |                            | · · ·                    |                    |                        |                         |
|                                                     | 0.2                                            | _ft +                      | 5.0                      | ft =               | <u>5.2</u> ft          |                         |
|                                                     |                                                |                            |                          |                    |                        |                         |
| g. Downslope berm mult                              | liplier based on percei<br>Selected berm multi |                            |                          |                    |                        |                         |
|                                                     | Selected bern multi                            | plier:                     | 3.19                     |                    |                        |                         |
| h. Downslope width = dc                             | wnslope multiplier(G;                          | a) times downslope mo      | und height(G2f)          |                    |                        |                         |
| ·                                                   | 3.19                                           | x                          | 5.2                      | =                  | 16.6 ft                |                         |
|                                                     |                                                | -                          | 0                        |                    |                        |                         |
| i. Select greater of G1 ar                          | nd G2h as the downsl                           | ope width                  |                          |                    | <u>    16.6     ft</u> |                         |
| j. Total mound width is th                          | ne sum of unsione (G                           | 2d) width plus rock laver  | width (D2) plus dow      | nelono width (C2i) |                        |                         |
| ji rota mound mound a                               | 14.2                                           | ft +                       | 10.0                     | ft +               | 16.6 ft =              | 40.8                    |
|                                                     |                                                | -                          | 0                        |                    | 10.0                   |                         |
| k Total mound length is                             | the sum of upsiope w                           | iutin (Ozu) pius rock laye | er iengui (Do) pius up   | osiope width (Gza) |                        |                         |
| k. Total mound length is                            |                                                |                            | 204.0                    | ft +               | 14.2 ft =              | 232.4f                  |
| k. Total mound length is                            | 14.2                                           | - <sup>ft</sup> +          | 204.0                    |                    |                        |                         |
| k. Total mound length is                            |                                                |                            | -                        |                    |                        |                         |
|                                                     | Final Dimensions (s                            | lope >1%)                  | 4                        | 0.8 ft x           | 232.4 ft               |                         |
| k. Total mound length is                            | Final Dimensions (s                            | lope >1%)                  | 4                        |                    |                        |                         |
|                                                     | Final Dimensions (s                            | lope >1%)                  | 4                        | ces, rules & laws. | 232.4 ft               | Contection (Contection) |

#### SAND VOLUME


H.

| 1. | Upslope Volume + Volume                                              | under rockbed + Do    | wnslope Volume          |                         |                  |          |                        |
|----|----------------------------------------------------------------------|-----------------------|-------------------------|-------------------------|------------------|----------|------------------------|
|    | a. Upslope Volume: (depth                                            | of clean sand + 1) x  | (upslope berm) x (mou   | nd length) / 2 = $ft^3$ |                  |          |                        |
|    | 4.0                                                                  | ft x                  | 14.2                    | ft x                    | 232.4            | ft / 2 = | 6600.2 ft <sup>3</sup> |
|    | b. Volume under rockbed:                                             | (average depth of sa  | nd under rock) x (rockb | ed width) x (mound le   | $ength) = ft^3$  |          |                        |
|    | 3.1                                                                  | ft x                  | 10.0                    | ft x                    | 232.4            | ft =     | 7204.4 ft <sup>3</sup> |
|    | c. Downslope Volume: (dej                                            | pth of clean sand + 1 | ) x (downslope berm) x  | (mound length) / 2 =    | ft <sup>3</sup>  |          |                        |
|    | 4.2                                                                  | ft x                  | 16.6                    | ft x                    | 232.4            | ft / 2 = | 8101.5 ft <sup>3</sup> |
|    | Total cubic feet:                                                    | =                     | 21906.0                 | ft <sup>3</sup>         |                  | 2        |                        |
| 2. | Divide ft <sup>3</sup> by 27 ft <sup>3</sup> /yd <sup>3</sup> to get | t cubic yards         |                         |                         |                  |          |                        |
|    |                                                                      | 21906.0               | / 27 =                  | 811.3                   | yds <sup>3</sup> |          |                        |
| 3. | Multiply cubic yards by 1.4                                          | to get weight of sand |                         |                         |                  |          |                        |
|    | _                                                                    | 811.3                 | yds <sup>3 x</sup> 1.4  | 1135.9                  | tons             |          |                        |
| 4  | Add 10% for Constructability                                         | у                     |                         |                         |                  |          |                        |
|    | _                                                                    | 1135.9 t              | ons x 1.1 =             | 1249.5                  | tons             |          |                        |


| No. of |         |          |           |          |
|--------|---------|----------|-----------|----------|
| Bdrms  | Class I | Class II | Class III | Class IV |
| 2      | 300     | 225      | 180       | 60% of   |
| 3      | 450     | 300      | 218       | the      |
| 4      | 600     | 375      | 256       | values   |
| 5      | 750     | 450      | 294       | in the   |
| 6      | 900     | 525      | 332       | Class I, |
| 7      | 1050    | 600      | 370       | ll or ll |
| 8      | 1200    | 675      | 408       | columns  |

| Perc Rate<br>mpi | Soil Texture                           | Loading Rate<br>gpd/sq ft | Absorption |
|------------------|----------------------------------------|---------------------------|------------|
|                  | Coarse sand                            | gpu/sq it                 | Ratio      |
| <5               | Loamy sand                             | 1.20                      | 1.00       |
|                  | Med., Fine sand                        |                           |            |
| 6 -15            | Sandy loam                             | 0.79                      | 1.50       |
| 16-30            | Loam                                   | 0.60                      | 2.00       |
| 31-45            | Silt Loam, Silt                        | 0.50                      | 2,40       |
| 46 - 60          | Clay loam, Silty<br>or Sandy Clay Loam | 0.45                      | 2.67       |
| 61-120           | Silty or Sandy<br>Clay or Clay         | 0.24                      | 5          |
| 120*             |                                        | 0.24                      | 5          |

| Land     |      |      | Upslope               |      | Downslope               |       |       |       |       |  |  |
|----------|------|------|-----------------------|------|-------------------------|-------|-------|-------|-------|--|--|
| %        |      | m    | ultipliers for variou | IS   | multipliers for various |       |       |       |       |  |  |
| Slope    |      |      | slope ratios          |      | slope ratios            |       |       |       |       |  |  |
|          | 3:1  | 4:1  | 5:1                   | 6:1  | 3:1                     | 4:1   | 5:1   | 6:1   | 7:1   |  |  |
| 0        | 3.00 | 4.00 | 5.00                  | 6.00 | 3.00                    | 4.00  | 5.00  | 6.00  | 7.00  |  |  |
| 1        | 2.91 | 3.85 | 4.76                  | 5.66 | 3.09                    | 4.17  | 5.26  | 6.38  | 7.53  |  |  |
| 2        | 2.83 | 3.70 | 4.54                  | 5.36 | 3.19                    | 4.35  | 5.56  | 6.82  | 8.14  |  |  |
| 3        | 2.75 | 3.57 | 4.35                  | 5.08 | 3.30                    | 4.54  | 5.88  | 7.32  | 8.86  |  |  |
| 4        | 2.68 | 3.45 | 4.17                  | 4.84 | 3.41                    | 4.76  | 6.25  | 7.89  | 9.72  |  |  |
| 5        | 2.61 | 3.33 | 4.00                  | 4.62 | 3.53                    | 5.00  | 6.67  | 8.57  | 10.77 |  |  |
| 6<br>7   | 2.54 | 3.23 | 3.85                  | 4.41 | 3.66                    | 5.26  | 7.14  | 9.38  | 12.07 |  |  |
|          | 2.48 | 3.12 | 3.70                  | 4.23 | 3.80                    | 5.56  | 7.69  | 10.34 | 13.73 |  |  |
| 8<br>9   | 2.42 | 3.03 | 3.57                  | 4.05 | 3.95                    | 5.88  | 8.33  | 11.54 | 15.91 |  |  |
| 9        | 2.36 | 2.94 | 3.45                  | 3.90 | 4.11                    | 6.25  | 9.09  | 13.04 | 18.92 |  |  |
| 10       | 2.31 | 2.86 | 3.33                  | 3.75 | 4.29                    | 6.67  | 10.00 | 15.00 | 23.33 |  |  |
| 11       | 2.26 | 2.78 | 3.23                  | 3.61 | 4.48                    | 7.14  | 11.11 | 17.65 | 30.43 |  |  |
| 12       | 2.21 | 2.70 | 3.12                  | 3.49 | 4.69                    | 7.69  | 12.50 | 21.43 | 43.75 |  |  |
| 13       | 2.17 | 2.62 |                       |      | 4.95                    | 8.29  |       |       |       |  |  |
| 14       | 2.13 | 2.55 |                       |      | 5.24                    | 8.92  |       |       |       |  |  |
| 15       | 2.09 | 2.48 |                       |      | 5.55                    | 9.57  |       |       |       |  |  |
| 16       | 2.06 | 2.41 |                       |      | 5.88                    | 10.24 |       |       |       |  |  |
| 17       | 2.03 | 2.35 |                       |      | 6.24                    | 10.94 |       |       |       |  |  |
| 18<br>19 | 2.00 | 2.29 |                       |      | 6.63                    | 11.67 |       |       |       |  |  |
|          | 1.97 | 2.23 |                       |      | 7.04                    | 12.42 |       |       |       |  |  |
| 20       | 1.95 | 2.18 |                       |      | 7.47                    | 13.19 |       |       |       |  |  |
| 21       | 1.93 | 2.13 |                       |      | 7.93                    | 13.99 |       |       |       |  |  |
| 22<br>23 | 1.91 | 2.08 |                       |      | 8.42                    | 14.82 |       |       |       |  |  |
|          | 1.89 | 2.03 |                       |      | 8.93                    | 15.67 |       |       |       |  |  |
| 24       | 1.87 | 1.98 |                       |      | 9.46                    | 16.54 |       |       |       |  |  |
| 25       | 1.85 | 1.93 |                       |      | 10.02                   | 17.44 |       |       |       |  |  |



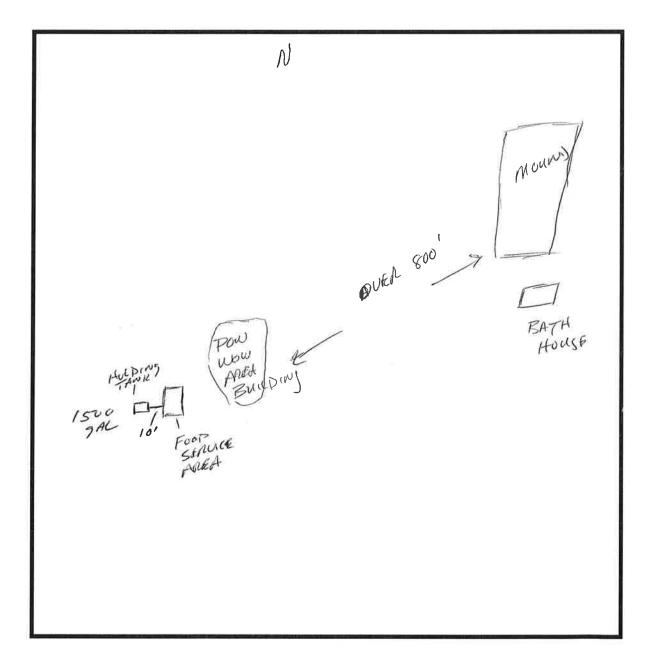
Mound Detail: Land slope > 1%



# University of Minnesota Pump Selection Procedure - 10/25/04 All boxed rectangles must be entered, the rest will be calculated.

 $\left( i \right)$ 

|                 | <ul> <li>A. Gravity Distribution</li> <li>1. Minimum required discharge is 10 gpm</li> <li>2. Maximum suggested discharge is 45 gpm</li> <li>For other establishments at least 10% greater than the water supply rate, but no faster than the rate at which effluent will flow out of the distribution device.</li> </ul> | LIMI C                    | -00                    | ÷            |      |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------|--------------|------|
|                 | B. Pressure Distribution - see pressure design worksheet                                                                                                                                                                                                                                                                  |                           |                        | point o      |      |
|                 | Selected Pump Capacity: 120 gpm                                                                                                                                                                                                                                                                                           | total pipe<br>length      |                        | 1            |      |
| <b>2.</b><br>A. | Determine Total Dynamic Head (TDH)       Inlet         Elevation difference between pump and point of discharge.       Inlet         14       feet                                                                                                                                                                        | 2/                        | \. elevati<br>differen |              |      |
| В.              | Special head requirement? (See Figure - Special Head Requirements)                                                                                                                                                                                                                                                        |                           |                        |              |      |
|                 | 5 feet                                                                                                                                                                                                                                                                                                                    | Special He                |                        |              |      |
| C.              | Friction loss in supply pipe                                                                                                                                                                                                                                                                                              | Gravity Dis<br>Pressure D |                        | Oft<br>1 5ft |      |
|                 | 1. Select pipe diameter 3 in                                                                                                                                                                                                                                                                                              |                           |                        |              |      |
|                 | 2. Enter Figure E-9 with gpm (1A or B) and pipe diameter (C1)                                                                                                                                                                                                                                                             |                           |                        |              |      |
|                 | Read friction loss in feet per 100 feet from Figure E-9                                                                                                                                                                                                                                                                   | E-9 Frictio               | n Loss ir              | Plastic      | Pipe |
|                 | Friction loss≃ 1.4 ft/ 100 ft of pipe                                                                                                                                                                                                                                                                                     |                           | per 100                |              |      |
|                 |                                                                                                                                                                                                                                                                                                                           |                           | n                      | ominal       |      |
|                 | 3. Determine total pipe length from pump discharge to soil system discharge point.                                                                                                                                                                                                                                        | Flow Rate                 | pi                     | oe diame     | ter  |
|                 | Estimate by adding 25 percent to pipe length for friction loss in fittings.                                                                                                                                                                                                                                               | (gpm)                     | 1.5"                   | 2.0"         | 3"   |
|                 | Pipe length times 1.25 = equivalent pipe length                                                                                                                                                                                                                                                                           | 20                        | 2.47                   | 0.73         | 0.1  |
|                 | 175 ft x 1.25 = 218.75 feet                                                                                                                                                                                                                                                                                               | 25                        | 3.73                   | 1.11         | 0.16 |
|                 |                                                                                                                                                                                                                                                                                                                           | 30                        | 5.23                   | 1.55         | 0.23 |
|                 | <ol><li>Calculate total friction loss by multiplying friction loss (C2)</li></ol>                                                                                                                                                                                                                                         | 35                        | 6.96                   | 2.06         | 0.3  |
|                 | by the equivalent pipe length (C3) and divide by 100.                                                                                                                                                                                                                                                                     | 40                        | 8.91                   | 2.64         | 0.39 |
|                 | Friction Loss = <u>1.4</u> ft/100ft X <u>218.75</u> ft / 100 = <u>3.1</u> feet                                                                                                                                                                                                                                            | 45                        | 11.07                  | 3.28         | 0.48 |
|                 |                                                                                                                                                                                                                                                                                                                           | 50                        | 13.46                  | 3.99         | 0.58 |
| D.              | Total head requirement is the sum of elevation difference (A), special                                                                                                                                                                                                                                                    | 55                        |                        | 4.76         | 0.7  |
|                 | head requirements (B), and total friction loss (C4).                                                                                                                                                                                                                                                                      | 60                        | 5 - 3 - A              | 5.6          | 0.82 |
|                 | <u>    14    ft +    5    ft +   3.1   ft</u>                                                                                                                                                                                                                                                                             | 65                        |                        | 6.48         | 0.95 |
|                 | Total Head: 22.1 feet                                                                                                                                                                                                                                                                                                     | 70                        |                        | 7.44         | 1.09 |
|                 |                                                                                                                                                                                                                                                                                                                           |                           |                        |              |      |
| 3.              | Pump Selection                                                                                                                                                                                                                                                                                                            |                           |                        |              |      |
|                 | 1. A pump must be selected to deliver at least120gpm (1A or B)with at least22.1feet of total head (2D).                                                                                                                                                                                                                   |                           |                        |              |      |
| hei             | reby certify that I have completed this work in accordance with all applicable ordinances,                                                                                                                                                                                                                                | rules and laws            | i.                     |              |      |
| _               | wand the (signature) 1472 (license #)                                                                                                                                                                                                                                                                                     | <b>77/15/</b> 2015        |                        |              |      |


## University of Minnesota Dosing Chamber Sizing with a Timer All boxed rectangles must be entered, the rest will be calculated.

| 1.        | Determine area<br>A. Rectangle area = L x W<br>B. Circle area = $3.14 \times \text{radius}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |                                                           | Widt                                          | h                 |                                  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------|-----------------------------------------------|-------------------|----------------------------------|
|           | 3.14 x $^{2}$ ft = 0.0 ft <sup>2</sup><br>C. Get area from manufacture ft <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Leng                      | th                                                        | $\left( \right)$                              |                   |                                  |
| 2.        | Calculate gallons per inch<br>There are 7.5 gallons per cubic foot of volume, therefore multiply the area (1A, B or C)<br>times the conversion factor and divide by 12 inches per foot to calculate gallon per incl<br>Surface area x 7.5 / 12 = 0.0 ft <sup>2</sup> x 7.5 / 12in/ft = 70.1 gallon per<br>MANUFACTURER                                                                                                                                                                                                                                                                                                        | h.                        |                                                           | Legal Tank<br>00 gallons                      |                   |                                  |
| 3.        | Calculate recommended capacity = average design flow (see chart A-1) x 2<br>2450 gpd x 2 =gal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           | 1009                                                      | % the daily<br>ternating F                    | flow              |                                  |
| 4.        | Calculate total tank volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ī —                       |                                                           |                                               |                   |                                  |
|           | A. Depth from bottom of inlet pipe to tank bottom = $72$ in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                         | ated Sewage F                                             | lows in GPD                                   |                   |                                  |
|           | B. Total tank volume = depth from bottom of inlet pipe to tank bottom(4A) x gal/in(2)<br>= <u>72</u> in x <u>70.1</u> gal/in = <u>5044.3</u> gallons                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Number o<br>Bedrooms<br>2 |                                                           | Class II<br>225                               | Class III         | Clas                             |
| 5.        | Calculate gallons to cover pump (with 2-3 inches of water covering pump)<br>(Pump and block height + 2 inches) x gallon per inch(2)<br>(14]+ 2 in) x70.1gal/in =1121.0_gallons                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3<br>4<br>5               | 450<br>600<br>750                                         | 300<br>375<br>450                             | 218<br>256<br>294 | the<br>valu                      |
| 6.        | Calculate total usable tank volume<br>total tank volume in gallons (4) - gallons to cover pump(5)<br>5044.3 gal - 1121.0 gal = 3923.4 gal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5<br>7<br>8               | 900<br>1050<br>1200                                       | 525<br>600<br>675                             | 332<br>370<br>408 | Clas<br>II or<br>colur           |
|           | A. Select pump size for 4-5 doses per day. Gallon per dose = gpd (see Figure A-1) / d<br>2450 gpd / 4 doses/day = 612.5 gallons<br>B. Calculate drainback<br>1. Determine total pipe length<br>2. Determine liquid volume of pipe, 0.38 gal/ft (see figure E-20)                                                                                                                                                                                                                                                                                                                                                              | loses per da              | y =<br><b>E-20 Volume</b><br>Pipe Diameter<br>inches<br>1 |                                               |                   |                                  |
|           | 2. Determine induit volume of pipe, $\_$ 0.38 gaint (see ingure 2-20)<br>3. Drainback quantity = 175 ft (7B1) x 0.38 gal/ft(7B2) 66.5<br>C. Total pump out volume = dose volume(7A) + drainback (7B3)<br><u>612.5</u> gallons + 66.5 gallons = 679.0 gallons                                                                                                                                                                                                                                                                                                                                                                  | _gallons                  | 1.25<br>1.5                                               | 0.078                                         |                   |                                  |
| 8.        | 3. Drainback quantity = 175 ft (7B1) x 0.38 gal/ft(7B2) 66.5         C. Total pump out volume = dose volume(7A) + drainback (7B3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _gallons<br>_gpm          | 1.25                                                      | 0.078                                         |                   |                                  |
| 8.<br>9.  | 3. Drainback quantity = <u>175</u> ft (7B1) x <u>0.38</u> gal/ft(7B2) <u>66.5</u><br>C. Total pump out volume = dose volume(7A) + drainback (7B3)<br><u>612.5</u> gallons + <u>66.5</u> gallons = <u>679.0</u> gallons<br>Pump Rate<br>From design <u>120</u> gpm<br>or calculated:<br><u>change in depth</u> (in) x gallon per inch(2) / time interval in min = gpm                                                                                                                                                                                                                                                          | _gpm                      | 1.25<br>1.5<br>2<br>2.5<br>3<br>4                         | 0.078<br>0.11<br>0.17<br>0.25<br>0.38<br>0.66 |                   |                                  |
| 9.        | 3. Drainback quantity = <u>175</u> ft (7B1) x <u>0.38</u> gal/ft(7B2) <u>66.5</u><br>C. Total pump out volume = dose volume(7A) + drainback (7B3)<br><u>612.5</u> gallons + <u>66.5</u> gallons = <u>679.0</u> gallons<br>Pump Rate<br>From design <u>120</u> gpm<br>or calculated:<br>change in depth (in) x gallon per inch(2) / time interval in min = gpm<br>in x <u>70.1</u> gal/in / min = <u>0.0</u><br>Calculate the timer ON setting<br>Dose gallons(7C) / gpm (8)                                                                                                                                                   | _gpm                      | 1.25<br>1.5<br>2<br>2.5<br>3<br>4                         | 0.078<br>0.11<br>0.17<br>0.25<br>0.38<br>0.66 |                   | - con                            |
| 9.<br>10. | 3. Drainback quantity = <u>175</u> ft (7B1) x <u>0.38</u> gal/ft(7B2) <u>66.5</u><br>C. Total pump out volume = dose volume(7A) + drainback (7B3)<br><u>612.5</u> gallons + <u>66.5</u> gallons = <u>679.0</u> gallons<br>Pump Rate<br>From design <u>120</u> gpm<br>or calculated:<br>change in depth (in) x gallon per inch(2) / time interval in min = gpm<br>in x <u>70.1</u> gal/in / <u>min = 0.0</u><br>Calculate the timer ON setting<br>Dose gallons(7C) / gpm (8)<br><u>679.0</u> gal / <u>120.0</u> gpm = <u>5.7</u> minutes ON<br>Calculate the timer OFF setting<br>minutes per day / doses per day - minutes on | _gpm                      | 1.25<br>1.5<br>2<br>2.5<br>3<br>4                         | 0.078<br>0.11<br>0.17<br>0.25<br>0.38<br>0.66 |                   | alas<br>con<br>puripo<br>corrito |

<u>(</u>

## AITKIN COUNTY BUILDING PERMIT SITE PLAN

Please indicate the location of: Wells, well setback to system components, buildings, septic system components, reserved septic system area, property lines, waterways, and buried lines. Include size, length, and appropriate distances from fixed reference points. Provide a North directional arrow!



|                                        | boxed rectangle                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    |                                                                                                                                                                                                                                     |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                         |              |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------|--------------|
| 1.                                     | Select num                                                                                                                                                                                                                                                                             | ber of perfor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rated laterals                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8:                                                                                                                                                                                                                                                                                                                                                      | 3                                                                                                                                                                                                                                                                                                                                                                                              | ONSITE<br>Sewage<br>Treatm<br>Progra                                                                                               | E S                                                                                                                                                                                                                                 |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                         |              |
| 2.                                     | Select perfo                                                                                                                                                                                                                                                                           | pration spaci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ing = [                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                       | ]ft                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                    |                                                                                                                                                                                                                                     |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                         |              |
| 3.                                     |                                                                                                                                                                                                                                                                                        | the rock lay<br>er length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ram), subtr                                                                                                                                                                                                                                                                                                                                             | r that 1 foot to<br>ract 2 feet from<br>_ft                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                    | nan fatter to de la contra contra<br>Contra contra c | eotextile fabric<br>9 of 1<br>9 of 1<br>9 zing 37 (6° - 17)?<br>9pacing 3.5'- 3' |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -          |                                         |              |
| 4.                                     |                                                                                                                                                                                                                                                                                        | ength (3) by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                            | spacing (2)                                                                                                                                                                                                                                                                                                                                             | ) and round do                                                                                                                                                                                                                                                                                                                                                                                 | own to nearest<br>3ft =                                                                                                            | whole nun<br>67                                                                                                                                                                                                                     | ıber.                                                                            | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                                         |              |
| 5.                                     | Select perfo                                                                                                                                                                                                                                                                           | oration size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ĩ                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                       | ]inch                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                    |                                                                                                                                                                                                                                     |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                         |              |
| 6.                                     | * Check figu<br>< 10% disch                                                                                                                                                                                                                                                            | ıre E-4 to as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sure the nui<br>on.                                                                                                                                                                                                                                                                                                                                                                                                                                        | mber of pe                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                | erforation spac<br>lateral guarant<br>ateral                                                                                       |                                                                                                                                                                                                                                     |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                         |              |
|                                        | E-4 Maximu                                                                                                                                                                                                                                                                             | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    | auna Munak                                                                                                                                                                                                                          | or of 2/46 in                                                                    | ob no foro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 41         |                                         |              |
|                                        | per lateral t                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    |                                                                                                                                                                                                                                     | per of 3/16 in<br>tee <10% dis                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                         |              |
|                                        | Perforation<br>Spacing                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pipe Diame                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tor                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                | Perforation<br>Spacing                                                                                                             | n                                                                                                                                                                                                                                   | Dine Diem                                                                        | - 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                         |              |
|                                        | ft                                                                                                                                                                                                                                                                                     | 1 inch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.25 inch                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.5 inch                                                                                                                                                                                                                                                                                                                                                | 2.0 inch                                                                                                                                                                                                                                                                                                                                                                                       | feet                                                                                                                               | 1 inch                                                                                                                                                                                                                              | Pipe Diam<br>1.25 inch                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.0 incl   | h                                       |              |
|                                        | 2.5                                                                                                                                                                                                                                                                                    | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18                                                                                                                                                                                                                                                                                                                                                      | 28                                                                                                                                                                                                                                                                                                                                                                                             | 2.5                                                                                                                                | 12                                                                                                                                                                                                                                  | 19                                                                               | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 39         |                                         |              |
|                                        | 3.0<br>3.3                                                                                                                                                                                                                                                                             | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17<br>16                                                                                                                                                                                                                                                                                                                                                | 26<br>25                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                  | 11                                                                                                                                                                                                                                  | 18                                                                               | 24<br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37         |                                         |              |
|                                        | 4.0                                                                                                                                                                                                                                                                                    | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15                                                                                                                                                                                                                                                                                                                                                      | 23                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                  | 10                                                                                                                                                                                                                                  | 16                                                                               | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 33         |                                         |              |
|                                        | 5.0                                                                                                                                                                                                                                                                                    | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14                                                                                                                                                                                                                                                                                                                                                      | 22                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                                  | 9                                                                                                                                                                                                                                   | 15                                                                               | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31         |                                         |              |
| I                                      | 1. Rock bed<br>10<br>2. Square fo                                                                                                                                                                                                                                                      | ded value is<br>l area = rock<br>ft x<br>pot per perfo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6-10 sqft/pe<br>width (ft) x<br>204 foration=Rock                                                                                                                                                                                                                                                                                                                                                                                                          | erf. Does n<br>rock lengtl<br>t =<br>k Bed Area                                                                                                                                                                                                                                                                                                         | n.<br>ot apply to at-g<br>h (ft)<br><u>2040</u> ft <sup>2</sup><br>i/number of pe                                                                                                                                                                                                                                                                                                              | rfs(6)                                                                                                                             |                                                                                                                                                                                                                                     |                                                                                  | 1 Ger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M. J       | 700 .<br>V (19)                         | split we     |
| [<br>-<br>8.                           | Recommend           1. Rock bed           10           2. Square for           2040.0                                                                                                                                                                                                  | ded value is<br>l area = rock<br>ft x<br>pot per perfo<br>ft <sup>2</sup> /<br>equired flow<br>ns(6A) by flo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6-10 sqft/pe<br>k width (ft) x<br>204 f<br>pration=Rock<br>204 p<br>rate by mult                                                                                                                                                                                                                                                                                                                                                                           | perforation<br>arf. Does n<br>rock length<br>t =<br>k Bed Area<br>berfs =<br>tiplying the<br>rations (se                                                                                                                                                                                                                                                | n.<br>ot apply to at-g<br>h (ft)<br><u>2040</u> ft <sup>2</sup><br>//number of pe<br><u>10.0</u> ft <sup>2</sup> ,<br>total number<br>e figure E-6)                                                                                                                                                                                                                                            | grades.<br>rfs(6)<br>/ perf                                                                                                        | apm                                                                                                                                                                                                                                 | M                                                                                | I Get                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N. J.      | JW.<br>V                                | split way    |
| [<br>-<br>8.                           | Recommend<br>1. Rock bed<br>10<br>2. Square for<br>2040.0<br>Determine re<br>of perforation                                                                                                                                                                                            | ded         value is           area = rock         ft x           ft x            pot per perform            ft²         /            equired flow             ns(6A) by flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6-10 sqft/pe<br>width (ft) x<br>204 f<br>pration=Rock<br>204 p<br>rate by mult<br>w per perfo<br>perfs x                                                                                                                                                                                                                                                                                                                                                   | perforation<br>erf. Does n<br>rock length<br>t =<br>k Bed Area<br>berfs =<br>hiplying the<br>rations (se<br>0.59                                                                                                                                                                                                                                        | n.<br>ot apply to at-o<br>h (ft)<br><u>2040</u> ft <sup>2</sup><br>i/number of pe<br><u>10.0</u> ft <sup>2</sup><br>total number<br>e figure E-6)<br>gpm / perfs =                                                                                                                                                                                                                             | grades.<br>rfs(6)                                                                                                                  | _gpm                                                                                                                                                                                                                                | M                                                                                | y get                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N. J.      | 100 .<br>V (100)                        | split from a |
| [<br>-<br>8.                           | Recommend<br>1. Rock bed<br>10<br>2. Square for<br>2040.0<br>Determine re<br>of perforation                                                                                                                                                                                            | ded         value is           area = rock         ft x           ft x            pot per perform            ft²         /            equired flow             ns(6A) by flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6-10 sqft/pe<br>width (ft) x<br>204 f<br>pration=Rock<br>204 p<br>rate by mult<br>w per perfo<br>perfs x t<br>tion Discha                                                                                                                                                                                                                                                                                                                                  | perforation<br>erf. Does n<br>rock length<br>t =<br>k Bed Area<br>berfs =<br>hiplying the<br>rations (se<br>0.59                                                                                                                                                                                                                                        | n.<br>ot apply to at-c<br>h (ft)<br><u>2040</u> ft <sup>2</sup><br>i/number of pe<br><u>10.0</u> ft <sup>2</sup><br>total number<br>e figure E-6)<br>gpm / perfs =<br><b>M</b>                                                                                                                                                                                                                 | grades.<br>rfs(6)<br>/ perf                                                                                                        | _gpm                                                                                                                                                                                                                                | M                                                                                | y Gel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N. J       | 7.10 <sup>3</sup>                       | split way    |
| [<br>-<br>8.                           | Recommend<br>1. Rock bed<br>10<br>2. Square for<br>2040.0<br>Determine re<br>of perforation                                                                                                                                                                                            | ded value is<br>a area = rock<br>ft x<br>bot per perfo<br>ft <sup>2</sup> /<br>equired flow<br>ns(6A) by flo<br>204<br><b>E-6 Perfora</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6-10 sqft/pe<br>width (ft) x<br>204 f<br>pration=Rock<br>204 p<br>rate by mult<br>w per perfo<br>perfs x<br>tion Discha<br>Perfor                                                                                                                                                                                                                                                                                                                          | perforation<br>erf. Does n<br>rock lengtl<br>t =<br>k Bed Area<br>berfs =<br>tiplying the<br>rations (se<br>0.59<br>rge in GP<br>ations dian<br>(inches)                                                                                                                                                                                                | n.<br>ot apply to at-o<br>h (ft)<br>2040 ft <sup>2</sup><br>i/number of pe<br><u>10.0</u> ft <sup>2</sup><br>total number<br>e figure E-6)<br>gpm / perfs =<br><u>M</u><br>neter                                                                                                                                                                                                               | grades.<br>rfs(6)<br>/ perf                                                                                                        | _gpm                                                                                                                                                                                                                                | M                                                                                | y Gel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N.         | 700 .<br>V                              | split un     |
| [<br>-<br>8.                           | Recommend<br>1. Rock bed<br>10<br>2. Square for<br>2040.0<br>Determine re<br>of perforation                                                                                                                                                                                            | ded value is<br>a area = rock<br>ft x<br>pot per perfo<br>ft <sup>2</sup> /<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6-10 sqft/pe<br>width (ft) x<br>204 f<br>pration=Rock<br>204 p<br>rate by mult<br>by per perfo<br>perfs x<br>tion Discha<br>Perfore<br>3/16                                                                                                                                                                                                                                                                                                                | perforation<br>erf. Does n<br>rock lengtl<br>t =<br>& Bed Area<br>berfs =<br>liplying the<br>rations (se<br>0.59<br>rge in GP<br>ations dian<br>(inches)<br>7/32                                                                                                                                                                                        | n.<br>ot apply to at-g<br>h (ft)<br><u>2040</u> ft <sup>2</sup><br>/number of pe<br><u>10.0</u> ft <sup>2</sup><br>total number<br>e figure E-6)<br>gpm / perfs =<br><u>M</u><br>neter<br>1/4                                                                                                                                                                                                  | grades.<br>rfs(6)<br>/ perf                                                                                                        | _gpm                                                                                                                                                                                                                                | M                                                                                | y Gel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N. J.      | JW                                      | split way    |
| [<br>-<br>8.                           | Recommend<br>1. Rock bed<br>10<br>2. Square for<br>2040.0<br>Determine re<br>of perforation                                                                                                                                                                                            | ded         value is           area = rock         ft x           pot per perform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6-10 sqft/pe<br>width (ft) x<br>204 f<br>pration=Rock<br>204 p<br>rate by mult<br>w per perfo<br>perfs x<br>tion Discha<br>Perfor                                                                                                                                                                                                                                                                                                                          | perforation<br>erf. Does n<br>rock lengtl<br>t =<br>k Bed Area<br>berfs =<br>tiplying the<br>rations (se<br>0.59<br>rge in GP<br>ations dian<br>(inches)                                                                                                                                                                                                | n.<br>ot apply to at-o<br>h (ft)<br>2040 ft <sup>2</sup><br>i/number of pe<br><u>10.0</u> ft <sup>2</sup><br>total number<br>e figure E-6)<br>gpm / perfs =<br><u>M</u><br>neter                                                                                                                                                                                                               | grades.<br>rfs(6)<br>/ perf                                                                                                        | _gpm                                                                                                                                                                                                                                | M                                                                                | y Gel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N. J       | 700 .<br>V ~ (193)                      | split way    |
| [<br>-<br>8.                           | Recommend<br>1. Rock bed<br>10<br>2. Square for<br>2040.0<br>Determine record<br>of perforation                                                                                                                                                                                        | ded value is<br>a area = rock<br>ft x<br>bot per perform<br>ft <sup>2</sup> /<br>equired flow<br>ns(6A) by flo<br>204 p<br>E-6 Perform<br>Head<br>(feet)<br>$1^{9}$<br>$2^{9}$<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6-10 sqft/pe<br>width (ft) x<br>204 f<br>paration=Rock<br>204 p<br>rate by mult<br>ov per perfo<br>perfs x<br>tion Discha<br>Perfor:<br>3/16<br>0.42<br>0.59<br>0.94                                                                                                                                                                                                                                                                                       | perforation<br>erf. Does n<br>rock length<br>t =<br>k Bed Area<br>berfs =<br>tiplying the<br>rations (se<br>0.59<br>rrge in GPI<br>ations dian<br>(inches)<br>7/32<br>0.56<br>0.80<br>1.26                                                                                                                                                              | n.<br>ot apply to at $\frac{1}{2040}$ ft <sup>2</sup><br>$\frac{2040}{100}$ ft <sup>2</sup><br>$\frac{10.0}{100}$ ft <sup>2</sup><br>total number<br>e figure E-6)<br>gpm / perfs =<br>M<br>neter<br>$\frac{1/4}{0.74}$                                                                                                                                                                        | grades.<br>rfs(6)<br>/ perf                                                                                                        | _gpm                                                                                                                                                                                                                                | M                                                                                | y Gel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N.         | V . WY                                  | split un     |
| [<br>-<br>8.                           | Recommend<br>1. Rock bed<br>10<br>2. Square for<br>2040.0<br>Determine re<br>of perforation                                                                                                                                                                                            | ded value is<br>a area = rock<br>ft x<br>bot per perform<br>ft <sup>2</sup> /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6-10 sqft/pe<br>width (ft) x<br>204 f<br>paration=Rock<br>204 p<br>rate by mult<br>ow per perfo<br>perfs x<br>tion Discha<br>Perfor<br>3/16<br>0.42<br>0.59<br>0.94<br>for single-famil                                                                                                                                                                                                                                                                    | perforation<br>erf. Does n<br>rock length<br>t =<br>k Bed Area<br>berfs =<br>tiplying the<br>rations (se<br>0.59<br>rrge in GPI<br>ations dian<br>(inches)<br>7/32<br>0.56<br>0.80<br>1.26<br>ly homes.                                                                                                                                                 | n.<br>ot apply to at $\frac{1}{100}$<br>h (ft)<br><u>2040</u> ft <sup>2</sup><br>i/number of pe<br><u>10.0</u> ft <sup>2</sup><br>total number<br>e figure E-6)<br>gpm / perfs =<br><u>M</u><br>neter<br><u>1/4</u><br>0.74<br>1.04                                                                                                                                                            | grades.<br>rfs(6)<br>/ perf                                                                                                        | _gpm                                                                                                                                                                                                                                | M                                                                                | N Gel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N.         | N.<br>V. (U)<br>V                       | split wa     |
| 8.                                     | Recommend<br>1. Rock bed<br>10<br>2. Square for<br>2040.0<br>Determine re<br>of perforation                                                                                                                                                                                            | ded value is<br>a area = rock<br>ft x<br>bot per perform<br>ft <sup>2</sup> /<br>equired flow<br>ns(6A) by flo<br>_204 _ p<br>E-6 Perform<br>Head<br>(feet)<br>$1^{a}$<br>$2^{o}$<br>5<br>a. Use 1.0 foot<br>b. Use 2.0 feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6-10 sqft/pe<br>width (ft) x<br>204 f<br>pration=Rock<br>204 p<br>rate by mult<br>ow per perfo<br>perfs x t<br>tion Discha<br>Perfor<br>3/16<br>0.42<br>0.59<br>0.94<br>for single-famil<br>for anything els                                                                                                                                                                                                                                               | perforation<br>erf. Does n<br>rock length<br>t =<br>k Bed Area<br>berfs =<br>tiplying the<br>rations (se<br>0.59<br>rrge in GPI<br>ations dian<br>(inches)<br>7/32<br>0.56<br>0.80<br>1.26<br>ly homes.                                                                                                                                                 | n.<br>ot apply to at $\frac{1}{100}$<br>h (ft)<br><u>2040</u> ft <sup>2</sup><br>i/number of pe<br><u>10.0</u> ft <sup>2</sup><br>total number<br>e figure E-6)<br>gpm / perfs =<br><u>M</u><br>neter<br><u>1/4</u><br>0.74<br>1.04                                                                                                                                                            | grades.<br>rfs(6)<br>/ perf                                                                                                        | _gpm                                                                                                                                                                                                                                | 4                                                                                | I Get                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M.         | JW                                      | split way    |
| 8.                                     | Recommend<br>1. Rock bed<br>10<br>2. Square for<br>2040.0<br>Determine re<br>of perforation                                                                                                                                                                                            | ded value is<br>a area = rock<br>ft x<br>bot per perfor<br>ft <sup>2</sup> /<br>equired flow<br>ns(6A) by flo<br><br>204<br>Fe-6 Perfora<br>Head<br>(feet)<br>$1^{a}$<br>$2^{a}$<br>5<br>a. Use 1.0 foot<br>b. Use 2.0 feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6-10 sqft/pe<br>(width (ft) x<br>204 f<br>pration=Rock<br>204 p<br>rate by mult<br>ow per perfo<br>perfs x<br>tion Discha<br>Perfor:<br>3/16<br>0.42<br>0.59<br>0.94<br>for anything els<br>e Size                                                                                                                                                                                                                                                         | perforation<br>erf. Does n<br>rock length<br>t =<br>k Bed Area<br>berfs =<br>tiplying the<br>rations (se<br>0.59<br>rrge in GP<br>ations dian<br>(inches)<br>7/32<br>0.56<br>0.80<br>1.26<br>ly homes.<br>e                                                                                                                                             | n.<br>ot apply to at- $(ft)$<br>2040 ft <sup>2</sup><br>//number of pe<br>10.0 ft <sup>2</sup> ,<br>total number<br>e figure E-6)<br>gpm / perfs =<br>M<br>neter<br>1/4<br>0.74<br>1.04<br>1.65                                                                                                                                                                                                | grades.<br>rfs(6)<br>/ perf                                                                                                        | _gpm                                                                                                                                                                                                                                | 4                                                                                | Y Gel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N.         | 7 (19)<br>V                             | split un     |
| 9.  <br>A.                             | Recommend<br>1. Rock bed<br>10<br>2. Square for<br>2040.0<br>Determine re<br>of perforation<br>Determine M<br>Manifold on<br>as shown in 1                                                                                                                                             | ded value is<br>a area = rock<br>ft x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6-10 sqft/pe<br>(width (ft) x<br>204 f<br>pration=Rock<br>204 p<br>rate by mult<br>ow per perfo<br>perfs x<br>tion Discha<br>Perfor:<br>3/16<br>0.42<br>0.59<br>0.94<br>for anything els<br>e Size<br>erals are con<br>to solect mir                                                                                                                                                                                                                       | perforation<br>erf. Does n<br>rock length<br>t =<br>k Bed Area<br>berfs =<br>tiplying the<br>rations (se<br>0.59<br>rrge in GP<br>ations dian<br>(inches)<br>7/32<br>0.56<br>0.80<br>1.26<br>y homes.<br>e<br>nected to l                                                                                                                               | h.<br>ot apply to at- $g$<br>h (ft)<br><u>2040</u> ft <sup>2</sup><br>/number of pe<br><u>10.0</u> ft <sup>2</sup><br>total number<br>e figure E-6)<br>gpm / perfs =<br><u>M</u><br>neter<br><u>1/4</u><br>0.74<br>1.04<br>1.65<br>header pipe<br>uired lateral                                                                                                                                | grades,<br>hfs(6)<br>/ perf<br><u>120.4</u>                                                                                        | •                                                                                                                                                                                                                                   | 4                                                                                | contractory<br>A Statestary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M.         | 7 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | split un     |
| 9. 4<br>A. 1                           | Recommend<br>1. Rock bed<br>10<br>2. Square for<br>2040.0<br>Determine re<br>of perforation<br>Determine M<br>Manifold on<br>as shown in I<br>diameter; ent                                                                                                                            | ded value is<br>a area = rock<br>ft x<br>bot per perform<br>ft <sup>2</sup> /<br>equired flow<br>ns(6A) by flo<br>204<br>Te-6 Perform<br>Head<br>(feet)<br>$1^a$<br>5<br>a. Use 1.0 foot<br>b. Use 2.0 feet<br>linimum Pipe<br>End. If late<br>Figure E-1, if<br>ter figure E-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6-10 sqft/pe<br>(width (ft) x<br>204 f<br>pration=Rock<br>204 p<br>rate by mult<br>ow per perfo<br>perfs x<br>tion Discha<br>Perfor:<br>3/16<br>0.42<br>0.59<br>0.94<br>for anything els<br>e Size<br>trals are con<br>to solect mir<br>4 or E-5 with                                                                                                                                                                                                      | perforation<br>arf. Does n<br>rock length<br>t =<br>k Bed Area<br>berfs =<br>hiplying the<br>rations (se<br>0.59<br><b>rrge in GP</b><br>ations dian<br>(inches)<br>7/32<br>0.56<br>0.80<br>1.26<br>y homes.<br>e<br>nected to l<br>nimum require<br>perforation                                                                                        | n.<br>ot apply to at-g<br>h (ft)<br><u>2040</u> ft <sup>2</sup><br>/number of pe<br><u>10.0</u> ft <sup>2</sup><br>total number<br>e figure E-6)<br>gpm / perfs =<br><u>M</u><br>neter<br><u>1/4</u><br>0.74<br><u>1.04</u><br><u>1.65</u><br>header pipe<br>uired lateral<br>on spacing anc                                                                                                   | grades,<br>hfs(6)<br>/ perf<br><u>120.4</u>                                                                                        | •                                                                                                                                                                                                                                   | 1                                                                                | contractory<br>A Statestary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M - M      | Ju .<br>V                               | Split un     |
| 9.  <br>A.  <br>C.                     | Recommend<br>1. Rock bed<br>10<br>2. Square for<br>2040.0<br>Determine re<br>of perforation<br>Determine M<br>Manifold on<br>as shown in I<br>diameter; ent                                                                                                                            | ded value is<br>a area = rock<br>ft x<br>pot per perform<br>ft <sup>2</sup> /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6-10 sqft/pe<br>(width (ft) x<br>204 f<br>pration=Rock<br>204 p<br>rate by mult<br>ow per perfo<br>perfs x<br>tion Discha<br>Perfor:<br>3/16<br>0.42<br>0.59<br>0.94<br>for anything els<br>e Size<br>trals are con<br>to solect mir<br>4 or E-5 with                                                                                                                                                                                                      | perforation<br>arf. Does n<br>rock length<br>t =<br>k Bed Area<br>berfs =<br>hiplying the<br>rations (se<br>0.59<br><b>rrge in GP</b><br>ations dian<br>(inches)<br>7/32<br>0.56<br>0.80<br>1.26<br>y homes.<br>e<br>nected to l<br>nimum require<br>perforation<br>elect minim                                                                         | h.<br>ot apply to at- $g$<br>h (ft)<br><u>2040</u> ft <sup>2</sup><br>/number of pe<br><u>10.0</u> ft <sup>2</sup><br>total number<br>e figure E-6)<br>gpm / perfs =<br><u>M</u><br>neter<br><u>1/4</u><br>0.74<br>1.04<br>1.65<br>header pipe<br>uired lateral                                                                                                                                | grades,<br>hfs(6)<br>/ perf<br><u>120.4</u>                                                                                        | •                                                                                                                                                                                                                                   | 1                                                                                | contractory<br>A Statestary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M<br>M     | 2~10 <sup>3</sup>                       | split un     |
| 9. 1<br>A. 1                           | Recommend<br>1. Rock bed<br>10<br>2. Square for<br>2040.0<br>Determine re<br>of perforation<br>Determine M<br>Manifold on<br>as shown in<br>diameter; end<br>number of perforated                                                                                                      | ded value is<br>a area = rock<br>ft x<br>bot per perform<br>ft <sup>2</sup> / -<br>equired flow<br>ns(6A) by flo<br>204 p<br>E-6 Perform<br>Head<br>(feet)<br>$1^8$ 2°<br>5<br>a. Use 1.0 foot<br>b. Use 2.0 feet<br>Figure E-1, flate<br>Figure E-1, fla | 6-10 sqft/pe<br>(width (ft) x<br>204 f<br>pration=Rock<br>204 p<br>rate by mult<br>ow per perfo<br>perfs x<br>tion Discha<br>Perfor<br>3/16<br>0.42<br>0.59<br>0.94<br>for single-famil<br>for anything els<br>e Size<br>prats are conn<br>to solect mir<br>4 or E-5 with<br>er lateral. S                                                                                                                                                                 | perforation<br>erf. Does n<br>rock length<br>t =<br>k Bed Area<br>berfs =<br>tiplying the<br>rations (se<br>0.59<br>rrge in GPI<br>ations dian<br>(inches)<br>7/32<br>0.56<br>0.80<br>1.26<br>binum requi-<br>perforation<br>elect minin                                                                                                                | h.<br>ot apply to at-g<br>h (ft)<br>2040 ft <sup>2</sup><br>/number of pe<br>10.0 ft <sup>2</sup><br>total number<br>e figure E-6)<br>gpm / perfs =<br>M<br>neter<br>1/4<br>0.74<br>1.04<br>1.65<br>header pipe<br>wired lateral<br>on spacing and<br>num diameter<br>inches                                                                                                                   | grades,<br>hfs(6)<br>/ perf<br><u>120.4</u>                                                                                        | I: Manifold Loca                                                                                                                                                                                                                    | sted al End of Syste                                                             | contractory<br>A Statestary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M -        | 2 100                                   | split un     |
| 9. /<br>A. I<br>G.                     | Recommend<br>1. Rock bed<br>10<br>2. Square for<br>2040.0<br>Determine re<br>of perforation<br>Determine M<br>Manifold on<br>as shown in I<br>diameter; ent<br>number of perforated<br>Center Mani<br>manifold pipe                                                                    | ded value is<br>a area = rock<br>ft x<br>bot per perform<br>ft <sup>2</sup> /<br>equired flow<br>ns(6A) by flo<br>_204 pr<br>E-6 Perform<br>Head<br>(feet)<br>$1^{a}$ 2°<br>5<br>a. Use 1.0 foot<br>b. Use 2.0 feet<br>Figure E-1, i<br>ter figure E-1, i<br>ter figure E-2, i<br>ter figure E-3, i<br>ter figure E-4, i | 6-10 sqft/pe<br>width (ft) x<br>204 f<br>pration=Rock<br>204 p<br>rate by mult<br>ow per perfo<br>perfs x t<br>tion Discha<br>Perfor<br>3/16<br>0.42<br>0.59<br>0.94<br>for single-famil<br>for anything els<br>e Size<br>rals are con<br>to solect mir<br>4 or E-5 with<br>er lateral. So<br>perfor lateral<br>perfor single-famil                                                                                                                        | perforation<br>arf. Does n<br>rock length<br>t =<br>k Bed Area<br>berfs =<br>tiplying the<br>rations (se<br>0.59<br>rge in GPI<br>ations dian<br>(inches)<br>7/32<br>0.56<br>0.80<br>1.26<br>by homes.<br>e<br>nected to I<br>nimum requires<br>perforation<br>elect minim<br>al system is<br>gure E-2, p                                               | n.<br>ot apply to at-g<br>h (ft)<br><u>2040</u> ft <sup>2</sup><br>//number of pe<br><u>10.0</u> ft <sup>2</sup> ,<br>total number<br>e figure E-6)<br>gpm / perfs =<br><u>M</u><br>neter<br><u>1/4</u><br>0.74<br>1.04<br>1.65<br>header pipe<br>uired lateral<br>on spacing and<br>num diameter<br>inches<br>s attached to<br>perforated late                                                | grades,<br>Infs(6)<br>/ perf<br><u>120.4</u><br>Higure L-<br>Higure L-                                                             | I: Manifold Loo                                                                                                                                                                                                                     | 1                                                                                | contractory<br>A Statestary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M - 1<br>M | Ju ivi                                  | split un     |
| 9. /<br>A. I<br>B. (<br>r<br>f         | Recommend<br>1. Rock bed<br>10<br>2. Square for<br>2040.0<br>Determine re<br>of perforation<br>Determine M<br>Manifold on<br>as shown in I<br>diameter; end<br>number of perforated<br>Center Mani<br>manifold pipe<br>and number of                                                   | ded value is<br>a area = rock<br>ft x<br>bot per perform<br>ft <sup>2</sup> /<br>equired flow<br>ns(6A) by flo<br>_204 pr<br>E-6 Perform<br>Head<br>(feet)<br>$1^{a}$ 2°<br>5<br>a. Use 1.0 foot<br>b. Use 2.0 feet<br>Figure E-1, 1<br>linimum Pipe<br>Figure E-1, 1<br>ler figure E-2, 1<br>erforations p<br>d laterals =<br>fold. If performation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6-10 sqft/pe<br>width (ft) x<br>204 f<br>pration=Rock<br>204 p<br>rate by mult<br>ow per perfo<br>perfs x<br>tion Discha<br>Perfor<br>3/16<br>0.42<br>0.59<br>0.94<br>for single-famil<br>for anything els<br>e Size<br>erals are con<br>to sclect mir<br>4 or E-5 witt<br>er lateral. Se<br>orated lateral<br>enter, like Figures                                                                                                                         | perforation<br>arf. Does n<br>rock length<br>t =<br>k Bed Area<br>berfs =<br>hiplying the<br>rations (se<br>0.59<br>rrge in GP<br>ations dian<br>(inches)<br>7/32<br>0.56<br>0.80<br>1.26<br>y homes.<br>e<br>nected to I<br>himum requi-<br>perforation<br>elect minin<br>al system is<br>gure E-2, p<br>al (5) will b                                 | n.<br>ot apply to at-g<br>h (ft)<br><u>2040</u> ft <sup>2</sup><br>/number of pe<br><u>10.0</u> ft <sup>2</sup><br>total number<br>e figure E-6)<br>gpm / perfs =<br><u>M</u><br>neter<br><u>1/4</u><br>0.74<br>1.04<br>1.65<br>header pipe<br>uired lateral<br>on spacing and<br>num diameter<br>inches<br>s attached to<br>perforated late<br>e approximate                                  | grades,<br>Infs(6)<br>/ perf<br><u>120.4</u><br>Higure L-<br>Higure L-                                                             | I: Manifold Loo                                                                                                                                                                                                                     | aled al End of Syste                                                             | contractory<br>A Statestary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M - 1<br>M | 2 100                                   | split un     |
| 9. /<br>A. I<br>B. (<br>r<br>f<br>B. ( | Recommend<br>1. Rock bed<br>10<br>2. Square for<br>2040.0<br>Determine re<br>of perforation<br>Determine M<br>Manifold on<br>as shown in I<br>diameter; ent<br>number of perforated<br>Center Manifold pipe<br>and number of<br>perforated<br>Center Manifold pipe<br>and number of th | ded value is<br>a area = rock<br>ft x<br>bot per perform<br>ft <sup>2</sup> /<br>equired flow<br>ns(6A) by flo<br>_204 _ p<br><b>E-6 Perform</b><br>Head<br>(feet)<br>$1^{a}$ 2°<br>5<br>a. Use 1.0 foot<br>b. Use 2.0 feet<br>Figure E-1, 1<br>der figure E-1, 1<br>for the figure E-1<br>erforations p<br>d laterals =<br>fold. If performation<br>at in step A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6-10 sqft/pe<br>(width (ft) x<br>204 f<br>pration=Rock<br>204 p<br>rate by mult<br>ow per perfo<br>perfs x<br>tion Discha<br>Perfor<br>3/16<br>0.42<br>0.59<br>0.94<br>for single-famil<br>for anything els<br>e Size<br>prats are con<br>to solect mir<br>4 or E-5 witt<br>er lateral. So<br>corated latera<br>enter, like Fig<br>ns per lateral.                                                                                                         | perforation<br>arf. Does n<br>rock length<br>t =<br>k Bed Area<br>berfs =<br>hiplying the<br>rations (se<br>0.59<br>rrge in GP<br>ations dian<br>(inches)<br>7/32<br>0.56<br>0.80<br>1.26<br>binum requint<br>perforation<br>elect minin<br>al system is<br>gure E-2, p<br>al (5) will bise values,                                                     | n.<br>ot apply to at-g<br>h (ft)<br><u>2040</u> ft <sup>2</sup><br>/number of pe<br><u>10.0</u> ft <sup>2</sup> ,<br>total number<br>e figure E-6)<br>gpm / perfs =<br><u>M</u><br>neter<br><u>1/4</u><br>0.74<br>1.04<br>1.65<br>header pipe<br>uired lateral<br>on spacing and<br>hum diameter<br>inches<br>s attached to<br>perforated late<br>e approximate<br>select                      | grades,<br>rfs(6)<br>/ perf<br><u>120.4</u><br>Higure L-<br>Higure L-<br>Higure L-<br>Higure L-                                    | I: Manifold Loo                                                                                                                                                                                                                     | aled al End of Syste                                                             | contractory<br>A Statestary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M - 4      | 2 100                                   | split un     |
| 9. /<br>A. I<br>B. (<br>r<br>f<br>B. ( | Recommend<br>1. Rock bed<br>10<br>2. Square for<br>2040.0<br>Determine re<br>of perforation<br>Determine M<br>Manifold on<br>as shown in I<br>diameter; end<br>number of perforated<br>Center Mani<br>manifold pipe<br>and number of                                                   | ded value is<br>a area = rock<br>ft x<br>bot per perform<br>ft <sup>2</sup> /<br>equired flow<br>ns(6A) by flo<br>_204 _ p<br><b>E-6 Perform</b><br>Head<br>(feet)<br>$1^{a}$ 2°<br>5<br>a. Use 1.0 foot<br>b. Use 2.0 feet<br>Figure E-1, 1<br>der figure E-1, 1<br>for the figure E-1<br>erforations p<br>d laterals =<br>fold. If performation<br>at in step A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6-10 sqft/pe<br>(width (ft) x<br>204 f<br>pration=Rock<br>204 p<br>rate by mult<br>ow per perfo<br>perfs x<br>tion Discha<br>Perfor<br>3/16<br>0.42<br>0.59<br>0.94<br>for single-famil<br>for anything els<br>e Size<br>prats are con<br>to solect mir<br>4 or E-5 witt<br>er lateral. So<br>corated latera<br>enter, like Fig<br>ns per lateral.                                                                                                         | perforation<br>arf. Does n<br>rock length<br>t =<br>k Bed Area<br>berfs =<br>hiplying the<br>rations (se<br>0.59<br>rrge in GP<br>ations dian<br>(inches)<br>7/32<br>0.56<br>0.80<br>1.26<br>binum requint<br>perforation<br>elect minin<br>al system is<br>gure E-2, p<br>al (5) will bise values,                                                     | n.<br>ot apply to at-g<br>h (ft)<br><u>2040</u> ft <sup>2</sup><br>/number of pe<br><u>10.0</u> ft <sup>2</sup> ,<br>total number<br>e figure E-6)<br>gpm / perfs =<br><u>M</u><br>neter<br><u>1/4</u><br>0.74<br>1.04<br>1.65<br>header pipe<br>uired lateral<br>on spacing and<br>hum diameter<br>inches<br>s attached to<br>perforated late<br>e approximate<br>select                      | grades,<br>Infs(6)<br>/ perf<br><u>120.4</u><br>Higure L-<br>Higure L-                                                             | I: Manifold Loo                                                                                                                                                                                                                     | aled al End of Syste                                                             | contractory<br>A Statestary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M.         | 2 100                                   | Split un     |
| 9.  <br>8.<br>B.<br>B.<br>C<br>T       | Recommend<br>1. Rock bed<br>10<br>2. Square for<br>2040.0<br>Determine re<br>of perforation<br>Determine M<br>Manifold on<br>as shown in I<br>diameter; end<br>number of perforated<br>Center Mani<br>manifold pipe<br>and number of<br>one half of th<br>minimum diameter             | ded value is<br>a area = rock<br>ft x<br>pot per perform<br>ft <sup>2</sup> / -<br>equired flow<br>ns(6A) by flo<br>204 p<br>E-6 Perform<br>Head<br>(feet)<br>$1^{47}$ 2°<br>5<br>a. Use 1.0 foot<br>b. Use 2.0 feet<br>Figure E-1,<br>iter figure E-1,<br>er forations p<br>d laterals =<br>fold. If performe<br>ence are the co<br>of perforation<br>at in step A,<br>meter for pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6-10 sqft/pe<br>(width (ft) x<br>204 f<br>paration=Rock<br>204 p<br>rate by mult<br>ow per perfo-<br>berfs x<br>tion Discha<br>Perfor<br>3/16<br>0.42<br>0.59<br>0.94<br>for single-famil<br>for anything els<br>e Size<br>erals are con<br>to select mir<br>4 or E-5 with<br>er lateral. Se<br>corated latera<br>berfor the figure<br>series are con<br>to select mir<br>4 or E-5 with<br>er lateral. Se<br>corated latera<br>berforated latera           | perforation<br>arf. Does n<br>rock length<br>t =<br>k Bed Area<br>berfs =<br>liplying the<br>rations (se<br>0.59<br>rrge in GP<br>ations dian<br>(inches)<br>7/32<br>0.56<br>0.80<br>1.26<br>ly homes.<br>e<br>nected to I<br>nimum requ<br>perforation<br>elect minim<br>al system is<br>gure E-2, p<br>al (5) will b<br>se values,<br>pral =          | n.<br>ot apply to at-g<br>h (ft)<br><u>2040</u> ft <sup>2</sup><br>/number of pe<br><u>10.0</u> ft <sup>2</sup><br>total number<br>e figure E-6)<br>gpm / perfs =<br><u>M</u><br>neter<br><u>1/4</u><br>0.74<br>1.04<br>1.65<br>header pipe<br>uired lateral<br>on spacing and<br>num diameter<br>inches<br>s attached to<br>perforated late<br>e approximate<br><u>select</u><br><u>2</u> inc | grades,<br>hrfs(6)<br>/ perf<br><u>120.4</u><br>Hgure L-<br>Hgure L-<br>Hgure L-<br>Hgure L-                                       | I: Manifold Loca<br>Figure 6:2<br>In the Cel                                                                                                                                                                                        | aled al End of System                                                            | and Dimetaria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | 2                                       | Split un     |
| 9.  <br>8.<br>B.<br>B.<br>C<br>T       | Recommend<br>1. Rock bed<br>10<br>2. Square for<br>2040.0<br>Determine re<br>of perforation<br>Determine M<br>Manifold on<br>as shown in I<br>diameter; end<br>number of perforated<br>Center Mani<br>manifold pipe<br>and number of<br>one half of th<br>minimum diameter             | ded value is<br>a area = rock<br>ft x<br>pot per perform<br>ft <sup>2</sup> / -<br>equired flow<br>ns(6A) by flo<br>204 p<br>E-6 Perform<br>Head<br>(feet)<br>$1^{47}$ 2°<br>5<br>a. Use 1.0 foot<br>b. Use 2.0 feet<br>Figure E-1,<br>iter figure E-1,<br>er forations p<br>d laterals =<br>fold. If performe<br>ence are the co<br>of perforation<br>at in step A,<br>meter for pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6-10 sqft/pe<br>(width (ft) x<br>204 f<br>paration=Rock<br>204 p<br>rate by mult<br>ow per perfor-<br>204 p<br>rate by mult<br>ow per perfor-<br>204 p<br>rate by mult<br>ow per perfor-<br>3/16 0.42 0.59 0.94<br>for single-famil<br>for anything els<br>e Size<br>erals are con<br>to solect mir<br>4 or E-5 with<br>er lateral. Se<br>corated lateral<br>orated lateral<br>serforated lateral<br>corated lateral<br>corated lateral<br>corated lateral | perforation<br>arf. Does n<br>rock length<br>t =<br>k Bed Area<br>berfs =<br>liplying the<br>rations (se<br>0.59<br><b>rrge in GP</b><br>ations dian<br>(inches)<br>7/32<br>0.56<br>0.80<br>1.26<br>ly homes.<br>e<br>nected to I<br>nimum requ<br>n perforation<br>elect minin<br>al system is<br>gure E-2, p<br>al (5) will b<br>se values,<br>eral = | n.<br>ot apply to at-g<br>h (ft)<br><u>2040</u> ft <sup>2</sup><br>/number of pe<br><u>10.0</u> ft <sup>2</sup><br>total number<br>e figure E-6)<br>gpm / perfs =<br><u>M</u><br>neter<br><u>1/4</u><br>0.74<br>1.04<br>1.65<br>header pipe<br>uired lateral<br>on spacing and<br>num diameter<br>inches<br>s attached to<br>perforated late<br>e approximate<br>select<br><u>2</u> inc        | grades,<br>rfs(6)<br>/ perf<br><u>120.4</u><br>Hgure L-<br>Hgure L-<br>Hgure L-<br>Hal length (3)<br>Hy<br>hes<br>h all applicable | I: Manifold Loca<br>Figure 6:2<br>In the Cel                                                                                                                                                                                        | aled al End of System                                                            | restances of the second |            |                                         | split un     |
| 9.  <br>8.<br>B.<br>B.<br>C<br>T       | Recommend<br>1. Rock bed<br>10<br>2. Square for<br>2040.0<br>Determine re<br>of perforation<br>Determine M<br>Manifold on<br>as shown in I<br>diameter; end<br>number of perforated<br>Center Mani<br>manifold pipe<br>and number of<br>one half of th<br>minimum diameter             | ded value is<br>a area = rock<br>ft x<br>pot per perform<br>ft <sup>2</sup> / -<br>equired flow<br>ns(6A) by flo<br>204 p<br>E-6 Perform<br>Head<br>(feet)<br>$1^{47}$ 2°<br>5<br>a. Use 1.0 foot<br>b. Use 2.0 feet<br>Figure E-1,<br>iter figure E-1,<br>er forations p<br>d laterals =<br>fold. If performe<br>ence are the co<br>of perforation<br>at in step A,<br>meter for pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6-10 sqft/pe<br>(width (ft) x<br>204 f<br>paration=Rock<br>204 p<br>rate by mult<br>ow per perfor-<br>204 p<br>rate by mult<br>ow per perfor-<br>204 p<br>rate by mult<br>ow per perfor-<br>3/16 0.42 0.59 0.94<br>for single-famil<br>for anything els<br>e Size<br>erals are con<br>to solect mir<br>4 or E-5 with<br>er lateral. Se<br>corated lateral<br>orated lateral<br>serforated lateral<br>corated lateral<br>corated lateral<br>corated lateral | perforation<br>arf. Does n<br>rock length<br>t =<br>k Bed Area<br>berfs =<br>liplying the<br>rations (se<br>0.59<br>rrge in GP<br>ations dian<br>(inches)<br>7/32<br>0.56<br>0.80<br>1.26<br>ly homes.<br>e<br>nected to I<br>nimum requ<br>perforation<br>elect minim<br>al system is<br>gure E-2, p<br>al (5) will b<br>se values,<br>pral =          | n.<br>ot apply to at-g<br>h (ft)<br><u>2040</u> ft <sup>2</sup><br>/number of pe<br><u>10.0</u> ft <sup>2</sup><br>total number<br>e figure E-6)<br>gpm / perfs =<br><u>M</u><br>neter<br><u>1/4</u><br>0.74<br>1.04<br>1.65<br>header pipe<br>uired lateral<br>on spacing and<br>num diameter<br>inches<br>s attached to<br>perforated late<br>e approximate<br><u>select</u><br><u>2</u> inc | grades,<br>hrfs(6)<br>/ perf<br><u>120.4</u><br>Hgure L-<br>Hgure L-<br>Hgure L-<br>Hgure L-                                       | I: Manifold Loca<br>Figure 6:2<br>In the Cel                                                                                                                                                                                        | aled al End of System                                                            | restances of the second |            |                                         | Split un     |

### **AITKIN COUNTY ENVIRONMENTAL SERVICES**

### APPLICATION for an OPERATING PERMIT FOR WASTEWATER TREATMENT AND DISPERSAL

| PERMITTEE                                                                                                                                                               | PARCEL NUMBER                        | R_30.0.027 | 400 £ 500 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------|-----------|
| ADDRESS XXXX HWYH65                                                                                                                                                     | Mc CAEGON                            | Mn.        | -         |
| LEGAL DESCRIPTION                                                                                                                                                       |                                      |            | -         |
| TELEPHONE #                                                                                                                                                             | GIS LOCATION                         | J.         | -):       |
| A. DESCRIPTION OF WASTEWATER TREA<br>(Attach ISTS site evaluation and design<br>construction, operation, monitoring, ser<br>management; anticipated system life, hy<br> | estimated cost of size, component re | system     |           |

### B. MONITORING PLAN AND REPORTING FREQUENCY:

| PARAMETER               | COMPLIANCE<br>LIMIT | SAMPLE<br>LOCATION | SAMPLE<br>FREQUENCY | SAMPLE<br>TYPE | REPORTING<br>FREQUENCY |
|-------------------------|---------------------|--------------------|---------------------|----------------|------------------------|
| FLOW                    | 2450                | CYCLUE<br>CONSTUER | AFTER<br>EVENT      |                |                        |
| 5-DAY BOD               | P                   |                    | 6).                 |                |                        |
| TOTAL<br>NITROGEN       |                     |                    |                     |                |                        |
| TOTAL<br>PHOSPHORUS     |                     |                    |                     |                |                        |
| TSS                     |                     |                    |                     |                |                        |
| FATS,OILS<br>AND GREASE |                     |                    |                     |                |                        |
| FECAL<br>COLIFORM       |                     |                    |                     |                |                        |
| SEPARATION<br>DISTANCE  | 3'                  | MOUND              | AN.                 |                |                        |

OWNER

will perform the monitoring of this septic system.

### C. MAINTENANCE PLANS

|      | PARAMETER          | LOCATION                                    | FREQUENCY                       |
|------|--------------------|---------------------------------------------|---------------------------------|
|      | solids remain 1    | Septie tamles                               | annul                           |
| ¥) i | perf trate & Almin | pomptant                                    |                                 |
| 1    | Eschunt Filter     | Aug Septe Tamic                             |                                 |
|      | Flow               | chile countr-                               | 4                               |
|      | CLEAN' FILTER      | EVERY 30-90 DAYS OF<br>S EVERY 36 MONTHS    | (AS NEEDED (RECURD)<br>(RECURD) |
|      | RECERD METE        | ER READINGS EVERY 3                         | BO DAYS                         |
|      | CHECK MOUN         | D FOR SEEPAGE EVEN                          | Y 30 DAYS                       |
|      | D. MITIGATION PLAN | N:<br>OCCURS NOTIFY AND                     | KIN COUNTY AND                  |
|      | E-7 EXCAULT        | NG AS SOON AS POSSIB                        | LE.                             |
|      | DISCONNECT TI      | HE MOUND PUMP AND U<br>LS UNITIL THE PROBLE | SE THE TANKS AS                 |
|      | CALL & SEPTIC      | PUMPING COMPANY AND                         | SET UP A PUMPING                |
|      | CONTRACT.          |                                             |                                 |

I hereby certify with my signature as the designer, that all data for the operating permit application is true and correct to the best of my knowledge. I agree to indemnify and hold Aitkin County harmless from loses, damages, costs and charges that may be incurred by the County because of the information submitted with this application.

Signature

1412 License Number

<u>7-14-15</u> Date

1520 E Alaple AUE Munder 320-679-403/ Address Telephone #

KEVIN HERWIG

Name (please print)

c:operatpermit.doc

### MAINTENANCE SERVICE. MONITORING AND INSPECTION CONTRACT FOR INDIVIDUAL SEWAGE TREATMENT SYSTEM

It is hereby agreed this \_\_\_\_ day of \_\_\_\_\_ by and between (Inspector) and (client)

(Client) Name & Address\_ MILLE LACS BAND OF OTIBWE

Street Address XXXV Hwy H 65-City, State, Zip Mc Gregor MN.

That in consideration of the payments provided herein, the Inspector shall provide services to perform Preventative Maintenance, Monitoring and Inspection of the Individual Sewage Treatment System (ISTS) located at the property described in the Aitkin County Operating Permit.

Each inspection includes an examination of the ISTS followed by a written report to the client. This inspection report shall contain recommendations for operation and maintenance for failure-preventative measures, if any are deemed appropriate by the inspector and a list of recommended corrective measures or replacement parts. The Inspector is authorized to submit a copy of the report to the Aitkin County Environmental Services Department.

This contract does not assume any responsibilities or obligations, which are normally the responsibilities of the Client, as related to parts or labor and does not extend to cover any costs that may be associated with any recommendations made under this contract.

The Inspector can only contract or subcontract for parts or labor after authorization. Billings for service calls shall be made on a case by case basis. This contract only covers maintenance, monitoring and inspection services per current Aitkin County Operating Permit and does not cover alarm calls of any kind.

The Inspector shall be provided access to the site and the system in order to perform the following services:

#### SEPTIC TANK AND LIFT STATIONS INSPECTION

(check the boxes needed to fill the requirements of the Operating Permit)

Check septic tank and compartments for solids buildup and general appearance. If necessary, have tanks pumped (cost of pumping is the responsibility of the client).

Check effluent filter for buildup and clean, if applicable,

Check pumping system, including control panel and floats.

 $\underline{\checkmark}$  Record and date the readings of the elapsed time meter and cycle counter(s), if applicable.

Check dosing settings (in the control panel, if applicable).

\_\_\_ Other: \_\_\_\_\_

\*\*If the septic tank or lift stations need pumping to be in compliance with the operating permit the cost of the pumping is the responsibility of the Client.

#### TREATMENT DEVICE

Inspect pretreatment unit (aerobic tank, sand filter, etc.) per manufacturer's recommendations, if applicable.

Inspect and clean any parts per manufacturer's recommendations.

\_\_\_\_ Inspect and clean laterals, if applicable.

\_\_\_\_\_ Inspect the appearance of the wastewater inside the unit for color, turbidity and examination of odors.

\_\_\_\_ Sample effluent per Operating Permit monitoring requirements.

(Cost of sampling and analysis is the responsibility of the Client)

\_ Other: \_\_\_\_\_

### DISPERSAL FIELD

Inspect for visible signs of failure (surface discharge, soggy ground, wet spots, settling, etc.)

\_\_\_\_ If liquid level monitors are installed, levels will be observed and recorded.

Flush filters and clean cartridges, if applicable.

\_\_\_\_ Check field control unit solenoid operations or manual control, if applicable.

\_\_\_\_ Other: \_\_\_\_\_

In no event shall the Inspector be responsible for special or consequential damages, including but not limited to, loss of time, injury to personal property or any other consequential damages or incidental or economic loss due to equipment failure or for any other reason. This contract does not assume any responsibilities or obligations, which are normally, the responsibility of the Client or as, related to parts or labor and does not extend to cover any costs that may be associated with any recommendations made under this contract.

This contract shall be effective: Beginning \_\_\_\_\_, \_\_\_\_,

and Ending \_\_\_\_\_, \_\_\_\_,

#### Cost for Maintenance Service, Monitoring and Inspection Contract is:

\$\_\_\_\_\_/yr. For \_\_\_\_\_ years totaling \$\_\_\_\_\_\_

The Inspector agrees to provide inspection, monitoring and routine maintenance service only under this contract. The Client remedies for breach of this contract shall be limited to refund of any of the amounts paid in advance for service. This contract may be renewed 30 days from the ending date.

| Payment for | all services shall be paid            |             |
|-------------|---------------------------------------|-------------|
| Client:     | Inspector:                            | C           |
| Sign:       | Mille Law Hand will do own d<br>Sign: | Nain Enana, |
| Print:      | Print:                                |             |
| Date:       | Date:                                 |             |