FIELD EVALUATION SHEET

PRELIMINARY EVALUATION DATE 5-25-23, FIELD EVALUATION DATE 5-25-23 PROPERTY OWNER: One Baker/Scott+ Virginia Opphone ADDRESS: 38588 Stury 47 CITY, STATE, ZIP: aithin Mn 56431 LEGAL DESCRIPTION: PIN# 3/-0-057101 SEC 29T 47 R 26 TWP NAME Spencer FIRE# LAKE/RIVER LAKE CLASS OHWL FT.
DESCRIPTION OF SOIL TREATMENT AREAS AREA #1 AREA #2 REFERENCE BM ELEV. /OO FT DISTURBED AREAS YES NO YES NO REFERENCE BM DESCRIPTION COMPACTED AREAS YES NO YES NO FLOODING YES NO YES NO RUN ON POTENTIAL YES NO YES NO SLOPE % DIRECTION OF SLOPE LANDSCAPE POSITION YES ON YES NO VEGETATION TYPES
DEPTH TO STANDING WATER OR MOTTLED SOIL: BORING# 1 / , 1A, 2,2A
SOIL SIZING FACTOR: SITE #1 2.2 , SITE #2 CONSTRUCTION RELATED ISSUES: elevations to be determined by new plumbin LIC#_ 2264 SITE EVALUATOR SIGNATURE: Lauden Maschler SITE EVALUATOR NAME: Lou AND Maschler TELEPHONE# 218-839-3042 LUG REVIEW

SOIL BORING LOGS ON REVERSE SIDE

DESCRIPTION FOR OKESON

Parcel I

The Southeast Quarter of the Southwest Quarter of Section 29, Township 47, Range 26.

Except that part of the Southeast Quarter of the Southwest Quarter platted as Spencer Cemetery, as more particularly appears in the plat thereof on file and of record in the office of the register of deeds of Aitkin County, Minnesota.

Aitkin County, Minnesota. (Abstract)

Parcel II (remnant)

The Southwest Quarter of the Southeast Quarter and the Northwest Quarter of the Southeast Quarter of Section 29, Township 47, Range 26.

AND

The South Two (2) rods of the Southwest Quarter of the Northeast Quarter of Section 29, Township 47, Range 26, subject to mineral reservations, easements, zoning ordinances and restrictions of record, a shown by instrument recorded as Document No. 157397 in the Office of the Aitkin County Recorder.

EXCEPT

That part of the Southwest Quarter of the Southeast Quarter of Section 29, Township 47, Range 26, Aitkin County, Minnesota, lying southeasterly of Minnesota Trunk Highway No. 47.

Aitkin County, Minnesota. (Abstract)

Surveys/: 29-47-26-Okeson descriptions

SOILS CHARTS FOR BOTH PROPOSED AND ALTERNATE SITES

1 (PROPOSED) SOILS DATA

O-4 Clay loam 104R 3/4 4-9 clay loam 104R 3/4 9-13 Dandy Clay 104R 4/4 MUNSELL COLOR 104R 3/4 104R 3/4 9-13 Dandy Clay 104R 4/4

2 (PROPOSED) SOILS DATA

DEPT	H JES) _F	TEXTU	REAL STATES	MUNS	ELL:	
* Afternoon	**************************************	182.00	45 Wa (4)	· 有: 本有的		
					-	
:		¥				
				CWS		
		V.				

1 (ALTERNATE) SOILS DATA

INCOTE		1
(INCHES)		
0-4	clay loon	101R 3/2
4-8	Place loan	101R 3/3
10		
8-14	Sandy Cl	las IDYR 1/4
	- Jua	7

2 (ALTERNATE) SOILS DATA

:	里	旦	111	33	28	b	UE	VI)	EK	- (80)	M	INS	EL	LA	7.77
-1	(1	ΔG	HI	ES)	1.40	130	ac.	-48	K.H.W.	4-1	CE)EC	R		,
				-		- '			-	••	-	,			
5	ist.	12													
			ē												
							21								
ĺ															
-															
- Andrews	-														
Brannon															
1															
-															
-															
-															
L			-			-									

MOUND DESIGN WORK SHEET (For Flows u	n to 1'	200 1)				
A. Average Design FLOW						
	A-1:	Estimated S	ewage Flo	ws in G	allons per De	бу
Estimated $\frac{450}{50}$ gpd (see figure A-1) or measured $\frac{150}{50}$ x 1.5 (safety factor) = $\frac{1}{50}$ gpd			Class 1 300	Class II 225	Class III	Class IV
B. SEPTIC TANK Capacity	3 4 5		450 600 750	300 375 450	218 256	of the values
	6 7 8)	900 050 200	525 600	294 332 370	in the Class I, II, or III
C. SOILS (refer to site evaluation)			lank Capaciti	675	408	columns
Depth to restricting layer = feet Depth of percolation tests = feet		Number of Bedrooms	Minimum Li Capacity	quid Liq	quid capacity with arbage disposal	Liquid capacii with disposald lift inside
3. Texture Class Language feet		2 or less 3 or 4 5 or 6 7, 8 or 9	750 1000 1500 2000		1125 1500 2250	1500 2000 3000
Percolation rate mpi 4. Soil loading rate 45 gpd/sqft (see figure 5. Percent land slope 2 %	D-33)	7,007	2000		3000	4000
D. ROCK LAYER DIMENSIONS						
1. Multiply average design flow (A) by 0.83 to obtain $\frac{450}{2}$ gpd x 0.83 sqft/gpd $-\frac{374}{2}$ sqft 2. Determine rock layer width = 0.83 sqft/gpd x linear 0.83 sqft/gpd x	. Y 1			a.		
0.83 sqft/gpd x gpd/sqft = 3. Length of rock layer = area ÷ width = sqft (D1) ÷/_O ft (D2) = ft	ft		Mo		J LLR	
E. ROCK VOLUME	3 ::				ЛРI <u>:</u> ЛРI	≤12
1. Multiply rock area (D1) by rock depth of 1 ft to get of	rubịc f	eet of roo	ck	-0 11	711 1	=
2. Divide cuft by 27 cuft/cuyd to get cubic yards $ \frac{380}{380} \text{ cuft} + 27 \text{ cuyd/cuft} = \frac{14}{2} \text{ cuyd} $						
3. Multiply cubic yards by 1.4 to get weight of rock in t cuyd x 1.4 ton/cuyd = 14.63 tons	tons					
F. SEWAGE ABSORPTION WIDTH	Γ	D-33: Absorp	tion Width Si	zing Tab	le	
THE SEWAGE ABSORPTION WIDTH		Percolation Ra in Minutes pe Inch (MPI)	te	e Load G: per	ling Rate	orption atio
Absorption width equals absorption ratio (See Figure D-33 times rock layer width (D2)	3)	Faster than 5	Coarse Sand Medium Sand Loamy Sand Fine Sand	d i		.00
$2.4e7 \times 10 \text{ ft} = 26.7 \text{ ft}$		6 to 15 16 to 30 31 to 45	Sandy Loan Loam Silt Loam).60 2	50
x = x = x = x = x = x = x = x = x = x =	-	46 to 60	Silt Sandy Clay Los Silty Clay Los	am 0		.40
		61 to 120	Silty Clay Sandy Clay Clay	0	5.	00
	1	Slower than 120	10			

*System designed for these soils must be other or performance

(landslope greater than 1%)							over 1	No.	×			
1. Downslope absorption width = absorption width	dth (F)		TO T	Seal Park		0000			1. +		
minus rock layer width (D2)	,	,	The state of the s	200			Sando2		45	6" To	psoil	
26.7 ft- 10 ft = 16.7 ft			Separation	7	6				2000	13		
11 11 11				nd		Restrict	ing Layer		and			
2 Colombata and I in			Upslope	Width (C	2d)	Rock Wie	tth(D2)		nslope W	idth(GZi)		
2. Calculate mound size		1		- 0	-	********	All Sections of the Section of the S		ter	5		
UPSLOPE		å										
a. Depth of clean sand fill at upslope edge of					Ī	Sand	Absorp	tion Width	- Sentite	-		
rock layer = 3 ft minus the distance to restricting	laye	r (C1	1)			-	26	,7"				
$3 \text{ ft} - \text{ ft} = \underline{ 2} \text{ ft}$												
b. Mound height at the upslope edge of rock	D-34:	SLO	PE MU	LTIPL	IER TA	ABLE						
layer = depth of clean sand for separation (G2a)	Land			UPSLO	PE					WNSLO		
at upslope edge plus depth of rock layer (1 ft)	Slope, in %			pliers fo slope ra		15				pliers for lope rati		S
plus depth of cover (1 ft)		3:1	4:1	5:1	6:1	7:1	8:1	3:1	4:1	5:1	6:1	7:1
2 ft + 1ft + 1ft = 4 ft	0	3.0	4.0	5.0	6.0	7.0	8.0	3.0	4.0	5.0	6.0	7.0
c. Upslope berm multiplier based on land slope	1	2.91	3.85	4.76	5.66	6-54	7.41	3.09	4.17	5.26	6.38	7.53
3.70 (see figure D-34)	2	2.83	3.70	4.54	5.36	6.14	6.90	3.19	4_35	5.56	6.82	8.14
d. Upslope width = berm multiplier (G2c) x	3	2.75	3.57	4.35	5.08	5.79	6.45	3.30	4.54	5.88	7.32	8.86
upslope mound height (G2b):	4	2.68	3.45	4.17	4.84	5.46	6.06	3.41	4.76	6.25	7.89	9.72
$\frac{3.70}{3}$ x $\frac{4}{5}$ ft = $\frac{14.8}{5}$ ft	5	2.61	3.33	4.00	4.62	5.19	5.71	3.53	5.00	6.67	8.57	10.77
DOWNSLOPE	6	2.54	3.23	3.85	4.41	4.93	5.41	3.66	5.26	7.14	9.38	12.07
e. Drop in elevation = rock layer width (D2) x	7	2.48	3.12	3.70	4.23	4.70	5.13	3.80	5.56	7.69	10.34	13.73
percent landslope (C5) ÷ 100	8	2.42	3.03	3.57	4.05	4.49	4.88	3.95	5.88	8.33	11.54	15.91
$\frac{10}{10} \text{ ft x } \frac{2}{2} \% \div 100 = \frac{100}{2} \text{ ft } 2$	9	2.36	2.94	3.45	3.90	4.30	4.65	4.11	6.25	9.09	13.04	18.92
f. Downslope mound height = depth of clean	10	2.31	2.86	3.33	3.75	4.12	4.44	4.29	6.67	10.00	15.00	23.33
sand for slope difference (G2e) at downslope	12	2.21	2.70	3.23	3.49	3.95	4.26	4.48	7.14	11.11	17.65	30.43
				3-12	3.97		9.00	9.07	7-07	12.50	21.43	43.75
rock edge plus the mound height at the											-	
upslope edge of rock layer (G2b) $\frac{4.2}{2} \text{ ft + } \text{ft = } \frac{4.2}{2} \text{ ft}$												
		,										
g. Downslope berm multiplier based on percent	land	slc,										
4, 35 (see figure D-34)	. [Ť	-	and	,				
h. Downslope width = downslope multiplier					1	Jpslop	Width	h(G2d)				
(G2g) times downslope mound height (G2f)	1	San	1			/	4			. 4	and	
4.35 x 4.2 ft = 16.8 ft	Upsl	ope Wi	dth(G2c	(1)		Rock I Width	Bed (D2)	10		Linsla	pe Widt	h(G2d)
i. Select the greater of G1 and G2h as the	7	9		-	5,	- 10 /	h(D3)	. 0	•		(-
i. Select the greater of G1 and G2h as the downslope width: $\frac{17}{2}$ ft j. Total mound width is the sum of upslope width (G2d) width plus rock layer width					lanwood	ope Wid	th(G2i)	14,0	ft			
j. Total mound width is the sum of upslope				1	rosorp	NORTH-WARES	aux)_					
1				1				40	•			
(D2) plus downslope width (G2i)			5	and	Tota	l Length	(G2k)_	10	_ft			
$\frac{10}{10} \text{ ft} + \frac{14}{10} \text{ ft} + \frac{17}{10} \text{ ft} = \frac{43}{10} \text{ ft}$												
k. Total mound length is the sum of upslope wid	th (C	(2d)										
plus rock layer length (D3) plus upslope width (C	(2d)											
$\frac{16}{10}$ ft + $\frac{38}{10}$ ft + $\frac{16}{10}$ ft = $\frac{70}{10}$ feet	F			a see a				THE WAY COME				
			Fin	nal	Di	me	ne	ion	C.			
			A A						0.			
				4.	3	_ X	10					
		-										
I hereby certify that I have completed this work in accordan	ce wi	th ap	plical	ole or	dinar	ices.	rules	and la	ws.			
/1		1	T									1

Lau ann Maschlw (signature) 2264 (license #) 5-29-23 (date)

MOUND STOLE MIDTH & FENCTH

PRESSURE	DISTRIBU	TION	SYSTEM

- Select number of perforated laterals 3
- Select perforation spacing = ____ ft 2.
- Since perforations should not be placed closer than 1 foot to the edge of the rock layer (see diagram), subtract 2 feet from the rock layer length.

$$\frac{38}{\text{Rock layer length}} - 2 \text{ ft} = 36 \text{ ft}$$

Determine the number of spaces between perforations. Divide the length (3) by perforation spacing (2) and round down to nearest whole number.

Perforation spacing = 36 ft ÷ 3 ft = 12 spaces

Number of perforations is equal to one plus the number of perforation spaces(4). Check figure E-4 to assure the number of perforations per lateral guarantees <10% discharge variation.

 $\frac{12}{3}$ spaces + 1 = $\frac{13}{3}$ perforations/lateral

A. Total number of perforations = perforations per lateral (5) times number of laterals (1)

 $\frac{3}{9}$ perfs/lat x $\frac{3}{1}$ lat = $\frac{39}{9}$ perforations

B. Calculate the square footage per perforation. Should be 6-10 sqft/perf. Does not apply to at-grades.

Rock bed area = rock width (ft) x rock length (ft)

10 ft x 38. ft = 380 sqft Square foot per perforation = Rock bed area ÷ number of perfs (6) $380 \text{ sqft} \div 39 \text{ perfs} = 9.79 \text{sqft/perf}$

7. Determine required flow rate by multiplying the total number of perforations (6A) by flow per perforation (see figure E-6)

39 perfs x .74 gpm/perfs = 39 gpm

- If laterals are connected to header pipe as shown on upper 8. example, to select minimum required lateral diameter; enter figure E-4 with perforation spacing (2) and number of perforations per lateral (5) Select minimum diameter for perforated lateral = 1.5 inches.
- If perforated lateral system is attached to manifold pipe near the center, lower diagram, perforated lateral length (3) and number of perforations per lateral (5) will be approximately one half of that in step 8. Using these values, select minimum diameter for perforated lateral = _____ inches.

Perf Sizing 3/16" - 1/4" Perf Spacing 1.5'-5'

E-4: Maximum allowable number of 1/4-inch perforations per lateral to guarantee <10% discharge variation

perforation spacing				
(feet)	1 inch	1.25 inch	1.5 inch	2.0 inch
2.5	8	14	18	28
3.0	8	13	17	26
3.3	7	12	16	25
4.0	7	11	15	23
5.0	6	10	14	22

E-6: Perforation Discharge in gpm

h	perforation diameter (inches)								
head (feet)	1/8	3/16	7/32	1/4					
1.0°	0.18	0.42	0.56	0.74					
2.0b	0.26	0.59	0.80	1.04					
5.0	0.41	0.94	1.26	1.65					

^a Use 1.0 foot for single-family homes. b Use 2.0 feet for anything else.

MANIFOLD LOCATED AT END OF PRESSURE DISTRIBUTION SYSTEM

PERFORMATIONS ON DOT MALTERLATE LOCATA T PIPE FROM

I hereby certify that I have completed this work in accordance with applicable ordinances, rules and laws.

auann Maschlew (signature) 2264 (license #) 5-39-33 (date)

LOMIL SEFECTION LKOCEDOKF

1. Determine pump capacity:

A. Gravity distribution

- 1. Minimum required discharge is 10 gpm
- 2. Maximum suggested discharge is 45 gpm. For other establishments at least 10% greater than the water supply rate, but no faster than the rate at which effluent will flow out of the distribution device.
- B. Pressure distribution
 See pressure distribution work sheet

From A or B Selected pump capacity: 29 gpm

2. Determine pump head requirements:		
A. Elevation difference between pump and point of discharge? feet		soil treatment system & point of discharge
B. Special head requirement? (See Figure at right - Special Head Re	equirements)	total pipe length
C. Calculate Friction loss	inlet-	difference
1. Select pipe diameter in		
2. Enter Figure E-9 with gpm (1A or B) and pipe diameter (C1 Read friction loss in feet per 100 feet from Figure E-9		Head Poquirements

Friction Loss = $\frac{1.00}{100}$ ft/100ft of pipe
3. Determine total pipe length from pump discharge to soil treatment
discharge point. Estimate by adding 25 percent to pipe length for
fitting loss. Total pipe length times 1.25 = equivalent pipe length
45 feet x 1.25 = 56.25 feet
A Colorate total friction 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4. Calculate total friction loss by multiplying friction loss (C2) in ft/100 ft by the equivalent pipe length (C3) and divide by 100. = $\frac{1.55}{6.25}$ ft/100ft x $\frac{56.25}{6.25}$ ÷100 = $\frac{87}{6.25}$ ft

D. Total head required is the sum of elevation difference (A), special head requirements (B), and total friction loss (C4)

ft + 57 ft + 87/3 ft =

Total head: 13.87 feet

3. Pump selection	E	
A pump must be selected to deliver at lead (1A or B) with at least/ 4 feet of to		

-	Special Head Requirements	W-41
	Gravity Distribution	0 ft
	Pressure Distribution	

E-9: Friction Loss in Plastic Pipe				
Per 100 feet				
nominal pipe diameter				
flow rate	1.5"	2"	3"	
20	2.47	0.73	0.11	
25	3.73	1.11	0.16	
30	5.23	1.55	0.23	
35	6.96	2.06	0.30	
40	8.91	2.64	0.39	
45	11.07	3.28	0.48	
50	13.46	3.99	0.58	
55		4.76	0.70	
60		5.60	0.82	
65		6.48	0.95	
70		7.44	1.09	

I hereby certify that I have completed this work in account	rdance with applicable ordina	nces, rules and laws.
Lau an Maschler (signature)	2264 (license #)	5-29-23 (date)

Subsurface Sewage Treatment System Management Plan se Baker & Virginia Okeson Mailing Address: City: Site Address: 38588 This management plan will identify the operation and maintenance activities necessary to ensure long-term performance of your septic system. Some of these activities must be performed by you, the homeowner. Other tasks must be performed by a licensed septic service provider. System Designer: check every ____ ____ months. My System needs to be checked Local Government: check every _____ months. State Requirement: every 36 months. check every 36 months. **Homeowner Management Tasks** Leaks - Check (look, listen) for leaks in toilets and dripping faucets. Repair leaks promptly. Surfacing sewage - Regularly check for wet or spongy soil around your soil treatment area. Effluent filter - Inspect and clean twice a year or more. Alarms - Alarm signals when there is a problem. Contact a service provider any time an alarm signals. Event counter or water meter - Record your water use. -recommend meter readings be conducted (circle one: DAILY WEEKLY MONTHLY) **Professional Management Tasks** ☐ Check to make sure tank is not leaking ☐ Check and clean the in-tank effluent filter Check the sludge/scum layer levels in all septic tanks ☐ Recommend if tank should be pumped Check inlet and outlet baffles Check the drainfield effluent levels in the rock layer ☐ Check the pump and alarm system functions ☐ Check wiring for corrosion and function ☐ Check dissolved oxygen and effluent temperature in tank Provide homeowner with list of results and any action to be taken Flush and clean laterals if cleanouts exist "I understand it is my responsibility to properly operate and maintain the sewage treatment system on this property, utilizing the Management Plan. If requirements in the Management Plan are not met, I will promptly notify the permitting authority and take necessary corrective actions. If I have a new system, I agree to adequately protect the reserve area for future use as a soil treatment Property Owner Signature: Jee Boker Date: 5-29-33

See Reverse Side for Management Log