

Minnesota Pollution Control Agency

OSTP Mound Design Worksheet

University of Minnesota

Control Agency	WOIRSHEEL		or minimized in		15
1. SYSTEM SIZING:				ius.	
A. Design Flow (Flow & Soil - 1.A):	4/50 GPD	MOU	Table I IND CONTOUR LOADING RA	TES:	
B. Soil Loading Rate (Flow & Soil-3.6		Measured OF	Texture - derived	1	Contour Loading
C. Depth to Limiting Condition: D. Percent Land Slope:	4 I ft	≤ 60mp1			Rate: ≤12
E. Design Media Loading Rate:	1.20 GPD/ft ²	61-120 mp1 OF		_	≤12
F. Mound Absorption Ratio (1.E+1.B)	700	≥ 120 mpi*	>5.0*		≤6*
G. Design Contour Loading Rate:	12 GPD/ft	*Systems with	these values are not Type	e I syst	ems.
(From Table 1 - same as Linear Lo	ading Rate)		ng Rate is a recommended		
2. DISPERSAL MEDIA SIZING		Virginia de la composição		71513	
A. Calculate Required Dispersal Bed					
If a larger dispersal media area is desired, enter size:	(150) GPD ÷ 1	-20 GPD/f	t = [313]f	't ²	
B. Calculate Dispersal Bed Width: Co	ontour Loading Rate (1 G) ÷ D	esian Media La	adina Rate (1 F) = Rea	l Widt	-h
Di datatata Dispersot Ded Wideli. Ce					.11
	12 ft + 1	- a gpd/ft	$t^2 = \begin{bmatrix} 10 \\ \end{bmatrix}$	t	
C. Calculate Dispersal Bed Length: L	Dispersal Bed Area (2.A) ÷ Bed	d Width (2.B) =	Bed Length		
	375 ft² ÷	ft =	37-5 ft		
D. Select Dispersal Media:	lRock				
	Other Approved Media (Describe):			
3. ABSORPTION AREA SIZING			1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		
Note: Mound setbacks are measur	red from the Absorption Area.				
			Abasantian Width		
A. Calculate Absorption Width: Bed	ft x	5 =	= Absorption Width		
B. For slopes from 0 to 1%, the Absor	rption Width is measured from	n the bed equal	lly in both directions.		
Calculate Absorption Width Beyon	nd the Bed : Absorption Width	(3.A) - Bed Wi	dth (2.B) ÷ 2 = Width l	beyon	d Bed
	(ft -	ft) ÷	= 11		ft
C. For slopes >1%, the Absorption Wi	idth is measured downhill fro	m the upslope e	edge of the Bed.		il
Calculate Downslope Absorption V	Vidth: Absorption Width (3.A) - Bed Width (2.B) = ft		
	15 ft -	O ft =	ft		
Comments:					
Slope, CLR Choice, Material issues					
					1

13-18 ■ SECTION 13: Forms and Reference

4.		MOUND SIZING
	A.	Calculate Clean Sand Lift: 3 feet minus Depth to Limiting Condition (1.C) = Clean Sand Lift (1 ft minimum)
		3.0 ft - 3 ft = O ft
ľ	В.	Calculate Upslope Height: Clean Sand Lift (4.A) + media depth (1 ft.) + cover (1 ft.) = Upslope Height
	D.	34: Slope Multiplier Tables
		Land Slope % 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
	E	Upslope 2.1 3.00 2.91 2.83 2.75 2.68 2.61 2.54 2.48 2.42 2.36 2.31 2.26 2.21 2.17 2.13 2.09 2.06 2.03 2.00 1.97 1.95 1.93 1.91 1.89 1.87 1.85 3erm Ratio 4.1 4.00 3.85 3.70 3.57 3.45 3.33 3.23 3.12 3.03 2.94 2.86 2.78 2.70 2.62 2.55 2.48 2.41 2.35 2.29 2.23 2.18 2.13 2.08 2.03 1.98 1.93
	T	Land Slope % 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Downslope 3:1 3.00 3.09 3.19 3.30 3.41 3.53 3.66 3.80 3.95 4.11 4.29 4.48 4.69 4.95 5.24 5.55 5.88 6.24 6.63 7.04 7.47 7.93 8.42 8.93 9.46 10.02 Serm Ratio 4:1 4.00 4.17 4.35 4.54 4.76 5.00 5.26 5.56 5.88 6.25 6.67 7.14 7.69 8.29 8.92 9.57 10.24 10.94 11.67 12.42 13.19 13.99 14.82 15.67 16.54 17.44
	c.	Select Upslope Berm Multiplier (based on land slope): (figure D-34)
	D.	Calculate Upslope Berm Width: Multiplier (4.C) X Upslope Mound Height (4.B) = Upslope Berm Width
		3.85 ft x 5 ft = 19.25 ft
	E.	Calculate Drop in Elevation Under Bed: Bed Width (2.B) X Land Slope (1.D) ÷ 100 = Drop (ft)
		ft X
	F.	Calculate Downslope Mound Height: Upslope Height (4.B) + Drop in Elevation (4.E) = Downslope Height ft +
	_	Select Downslope Berm Multiplier
		(based on land slope):
	н.	Calculate Downslope Berm Width: Multiplier (4.G) X Downslope Height (4.F) = Downslope Berm Width $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
		Calculate Minimum Berm to Cover Absorption Area: Downslope Absorption Width (3.B or 3.C) + 4 ft. = ft
	**	ft + L ft = 19 ft
	J.	Design Downslope Berm = greater of 4H and 4I:
		Select Endslope Berm Multiplier: (usually 3.0 or 4.0)
		Calculate Endslope Berm (4.K) X Downslope Mound Height (4.F) = Endslope Berm Width
	-	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	м.	Calculate Mound Width: Upslope Berm Width (4.D) + Bed Width (2.B) + Downslope Berm Width (4.J) = ft
		19-25 ft + 10 ft + 21-27 ft = 50-52 ft
	N.	Calculate Mound Length: Endslope Berm Width (4.L) + Bed Length (2.C) + Endslope Berm Width (4.L) = ft
	_	20-4 ft + 38 ft + 20.4 ft = 78.8 ft
5.		ORGANIC LOADING: (Optional)
	A.	Organic Loading = Design Flow X Estimated BOD in mg/L in the effluent X 8.35 ÷ 1,000,000
		gpd X mg/L X 8.35 ÷ 1,000,000 = lbs BOD/day
	В.	Calculate System Organic Loading: lbs. BOD (5.A) ÷ Bed Area (2.A) = lbs/day/ft²
		lbs/day +
	c.	Recommended Organic Loading Rate: lbs/day/ft ²

13-20 ■ SECTION 13: Forms and Reference

7	CORROYMATE MOUND MATERIAL CALCULATIONS.
F	$\frac{38}{38} \text{ ft } \times 10 \text{ ft } \times 1.0 = 380 \text{ ft}^3$
В	Add 20% for constructability:
-	$\frac{3}{105} = \frac{3}{100} = \frac{3}$
E	Total Clean Sand Volume: Upslope Volume + Downslope Volume + Endslope Volume + Volume Under Media $ \begin{array}{cccccccccccccccccccccccccccccccccc$
	For the second company $\frac{1}{50}$ and $\frac{1}{50}$ are $\frac{1}{50}$ and $\frac{1}{50}$ and $\frac{1}{50}$ are $\frac{1}{50}$ are $\frac{1}{50}$ are $\frac{1}{50}$ and $\frac{1}{50}$ are $\frac{1}{50}$ are $\frac{1}{50}$ are $\frac{1}{50}$ and $\frac{1}{50}$ are $\frac{1}{50}$ a
D.	Divide ft ³ by 27 ft ³ /yd ³ to calculate cubic yards: $ \begin{array}{cccccccccccccccccccccccccccccccccc$
	Add 173-72 1.12 - 188.5 lvd3

1	hereby certify that I have completed this	work in accordance with	all applicable ordinances, r	ules and laws.
(Srea Westerland	LicalVester	lune 663	9/8/22
-	(Designer)	(Signature)	(License #)	(Daté)

13-30 ■ SECTION 13: Forms and Reference

Minnesota Pollution

OSTP Pump Selection Design Worksheet

University of Minnesota

1. PUMP CAPACITY	To Allington					
	1					
A. Pumping to Gravity or Pressure Distribution: OGravity Pressure						
 If pumping to gravity enter the gallon per minute of the pump: 	GPM					
2. If pumping to pressure, is the pump for the treatment system or the coll	ection system:					
●-Treatment System						
If pumping to a pressurized treatment system, what part or type of syste	ım:					
■Soil Treatment □ Media Filter □ Other						
4. If pumping to a pressurized distribution system:	33 GPM					
(Line 11 of Pressure Distribution or Line 10 of Non-Level or enter if Collection System)	JJ					
. HEAD REQUIREMENTS		1000		Win .		
3. Elevation Difference					5 point of	discharge
between pump and point of discharge:			- alv		1000	£ 00.
		suppl	love length			- 1
NOTE: IF system is an individual subsurface sewage treatment system, complete steps 4 - 9. If system is a Collection System,				stion .		
skip steps 4, 5, 7 and 8 and go to Step 10.			02500	NING.		
					. .	
4. Distribution Head Loss: 5 ft	-					
5. Additional Head Loss: If (due to special equipment,	etc)					
	Friction	lost	n Plast	c Pine	ner 10	n ft
Distribution Head Loss Gravity Distribution = Oft	Laboratoria de la compansión de la compa		(C=13		per to	
		Nomin	al Pipe	Diame	ter	X
Pressure Distribution based on Minimum Average Head Value on Pressure Distribution Worksheet:	Flow Rate (GPM)	1	11/4	11/2	2	3
Minimum Average Head Distribution Head Loss	10	9.11	3.08	1.27	0.31	
1ft 5ft	12	12.77	4.31	1.78	0.44	
2ft 6ft 5ft 10ft	14	16.99	5.74	2.36	0.58	
312 1012	16	ne.	7.35	3.03	0.75	0.10
6. A. Supply Pipe Diameter:	18		9.14	3.76	0.93	0.13
	20		11.11	4.58	1.13	0.16
B. Supply Pipe Length: ft	25		16.79	6.92	1.71	0.24
7. Based on Friction Loss in Plastic Pipe per 100ft from Table I:	30			9.69	2.39	0.33
. Dased on Therion coss in Flastic ripe per Toole from Table I.	35	100	200	12.90		
Friction Loss = 2 4 ft per 100ft of pipe	40			16.52		0.44
4. 7	45				5.07	0.70
3. Determine Equivalent Pipe Length from pump discharge to soil dispersal	50		1980			
area discharge point. Estimate by adding 25% to supply pipe length for	-				6.16	0.86
fitting loss. Supply Pipe Length (5.8) X 1.25 = Equivalent Pipe Length	55		900	****	7.35	1.02
[20]	60				8.63	1.20
50 ft X 1.25 = 62.5 ft	65				10.01	1.39
2. Falandata from the Falation Land has an 10. 1 to F. 10. 1 to F. 10. 10.	70	Direct I	-41-41.	7)	11.48	
9. Calculate Supply Friction Loss by multiplying Friction Loss Per 100ft (Line 6) by the Equivalent	Pipe Ler	gth (Lin	e 7) and	divide by	100.
Supply Friction Loss =			1			
(2.4) ft per 100ft x 2.4 ft ÷	100 = [.	5	ft			

Minnesota Pollution **Control Agency**

OSTP Pump Selection Design Worksheet

University OF MINNESOTA

10. Equivalent length of pipe fittings.

Section 10 is for Collection Systems ONLY and does NOT need to be completed for individual subsurface sewage treatment systems.

Quantity X Equivalent Length Factor = Equivalent Length

Fitting Type	Quantity		Equivalent Length Factor		Equivalent Length (ft)
Gate Valve		Х		et	
90 Deg Elbow		х		п	
45 Deg Elbow		Х		Ħ	
Tee - Flow Thru	1,0	Х		#	Marining
Tee - Branch Flow		х		п	
5wing Check Valve		х		=	
Angle Valve		х			
Globe Valve		Х		#	
Butterfly Valve		Х		=	8 711
Valve 10		х		n	= = max s
Valve 11		х	-11	=	

Equivalent Lengti	Fittings	(ft.) for P	VC Pipe
Cind - The	Pipe	Diameter	(in.)
Fitting Type	13/2	2	3
Gate Valve	1.07	1.38	2.04
90 Deg Elbow	4.03	5.17	7.67
45 Deg Elbow	2.15	2.76	4.09
Tee - Flow Thru	2.68	3.45	5.11
Tee - Branch Flow	8.05	10.30	15.30
Swing Check Valve	13.40	17.20	25.50
Angle Valve	20.10	25.80	38.40
Globe Valve	45.60	58.60	86.90
Butterfly Valve		7.75	11.50

NOTE: Equivalent length values for PVC pipe fittings are based on calculations using the Hazen-Williams Equation. See Advanced Designs for SSTS for equation. Other pipe material may require different equivalent length factors. Verify other equivalent length factors with pipe material manufacturer.

NOTE: System installer should contact system designer if the number of fittings varies from the design to the actual installation.

Hazen-Williams Equation for h

D in inches

C = 130

A.	Sum of	Equivalent	Length due	to pipe	fittings:
----	--------	------------	------------	---------	-----------

B. Total Pipe Length = Supply Pipe Length (5.B) + Equivalent Pipe Length (9.A.)

C. Hazen-Williams friction loss due to pipe fittings and supply pipe (
$$h_{\rm f}$$
):

Q in gpm L in feet Total Pipe Length (10.B)

(10.5 ÷
$$\sin^{4.87}$$
) X ($gpm \div 130$)^{1.85} X ft = ft

11. Total Head requirement is the sum of the Elevation Difference (Line 3), the Distribution Head Loss (Line 4), Additional Head Loss (Line 5), and either Supply Friction Loss (Line 9), or Friction Loss from the Supply Pipe and Pipe Fittings for collection systems (Line 10.C)

NOTE: Supply Friction Loss (Line 8) need ONLY be used if NOT a collection system.

NOTE: Friction Loss from the Supply Pipe and Pipe Fittings (Line 9.C) need ONLY be used if system is a collection system.

3. PUMP SELECTION

A pump must be selected to deliver at least

GPM (Line 1 or Line 2) with at least 14.

I hereby certify that I have completed this work in accordance with all applicable ordinances, rules and laws,

(License #)

(Date)

OF MINNESOTA OSTP Soil Observation Log

v 03.19.15

OF MI	OF MINNESOTA	A				0	Project ID: T	Test 1	v 03.19.15	18/1
Cli	ent/ Address:	Tom Ott	o ? 13506 :	309th Av	Client/ Address: Tom Otto? 13506 309th Ave, Princeton MN	Legal Desci	Legal Description/ GPS:	Lot 1, Blk !	Lot 1, Blk 8, Wealthwood Estates Golf Course	ates Golf Course
Soil parent n	Soil parent material(s): (Check all that apply)	heck all th	nat apply)	□○	Outwash Lacustrine	□ Loess □ Till	ill Alluvium	ım 🔲 Bedrock	ock Organic Matter	vatter
Landscape P	Landscape Position: (check one)	(one)	√ Summit	Shoulder	der 🔲 Back/Side Slope	pe	Toe Slope St	Slope shape	Col	Condave
Vegetation	W	Wooded		Soil	Soil survey map units	1115	Slope%	1.0	Elevation:	1255
Weather Con	Weather Conditions/Time of Day:	of Day:			Sunny			Date	09/	09/02/22
Observation	Observation #/Location:		Soil Bori	ng #2, So	Soil Boring #2, South end of mound area	area	Obser	Observation Type:	Αι	Auger
Depth (in)	Texture	Rock	Matrix Color(s)	lor(s)	Mottle Color(s)	Redox Kind(s)	Indicator(s)	÷	Structure]
ocpen (m)	- CXedi c	Frag. %	7 00	(3)	אייינייב בסוטו (ع)	(e) principle	ייישוכמנטי (א)	Shape	Grade	Consistence
4	Organic	<35%	10R 2/1	3			73	Single grain	Weak	Loose
œ	Sandy Loam	<35%	10R 2/2	/2	_			Single grain	Weak	Friable
9	Sandy Loam	<35%	10R 4/6	/6	7.5YR 4/3		2	Single grain	Weak	Friable
Comments										
hereby certi	fy that I have o	completed	this work	n accorda	Syea Wester land and laws.	able ordinances, r	ules and laws.	10/63		9/9/22
(Desi	(Désigner/Inspector)	7		þ	(Signature)	\$		(License #)	1	(Date)

OF MINNESOTA OSTP Soil Observation Log

Project ID: Test 1

03.19.15

TTAT TO	VI OCTAINITAL				ı	Project ID:	lest ?	V 03.19.13	574
Cli	ent/ Address:	Tom Ott	o ? 13506 309th /	Client/ Address: Tom Otto? 13506 309th Ave, Princeton MN	Legal Desc	Legal Description/ GPS:	Lot 1, Blk	8, Wealthwood E	Lot 1, Blk 8, Wealthwood Estates Golf Course
oil parent r	oil parent material(s): (Check all that apply)	heck all th		✓ Outwash 🔲 Lacustrine	□ Loess □ Till	ill Alluvium	ium 🔲 Bedrock	ock Organic Matter	c Matter
andscape P	andscape Position: (check one)	(one)	Summit Shoulder	ulder 🔲 Back/Side Slope	⊃e ∏ Foot Slope	☐ Toe Slop	Toe Slope Slope shape	0	Condave
egetation/		Wooded	So	Soil survey map units	1115	Slope%	1.0	Elevation:	1255
eather Cor	eather Conditions/Time of Day:	of Day:		Sunny			Date	90	09/02/22
Observatio	Observation #/Location:		Soil Boring #1, }	Soil Boring #1, North end of Mound area	area	Obse	Observation Type:	Ş	Soil Pit
enth (in)	Texture	Rock	Matrix Color(s)	Mottle Color(s)	Redox Kind(s)	Indicator(s)	-	Structure-	
) - Peri ()	i cytoi c	Frag. %	1480 12 CO(01 (3)	אטרונה כסנטו (3)	Redox Kilid(s)	וויטוכמנטו (א)	Shape	Grade	Consistence
4	Organic	<35%	10R 2/1			13	Single grain	Weak	Loose
∞	Sandy Loam	^35%	10R 2/2				Single grain	Weak	Friable
9	Sandy Loam	<35%	10R 4/6	7.5YR 4/3		\$2	Single grain	Weak	Friable
									bowen is a second
Comments									
nereby cert	ify that I have o	at I have completed t	this work in accor	nereby certify that I have completed this workin accordance with all applicable ordinances, rules and laws.	able ordinances, i	ules and laws	26		دد/۶/۹
(Des)	(Designer/Inspector)]		(Signature)			(License #)		(Date)