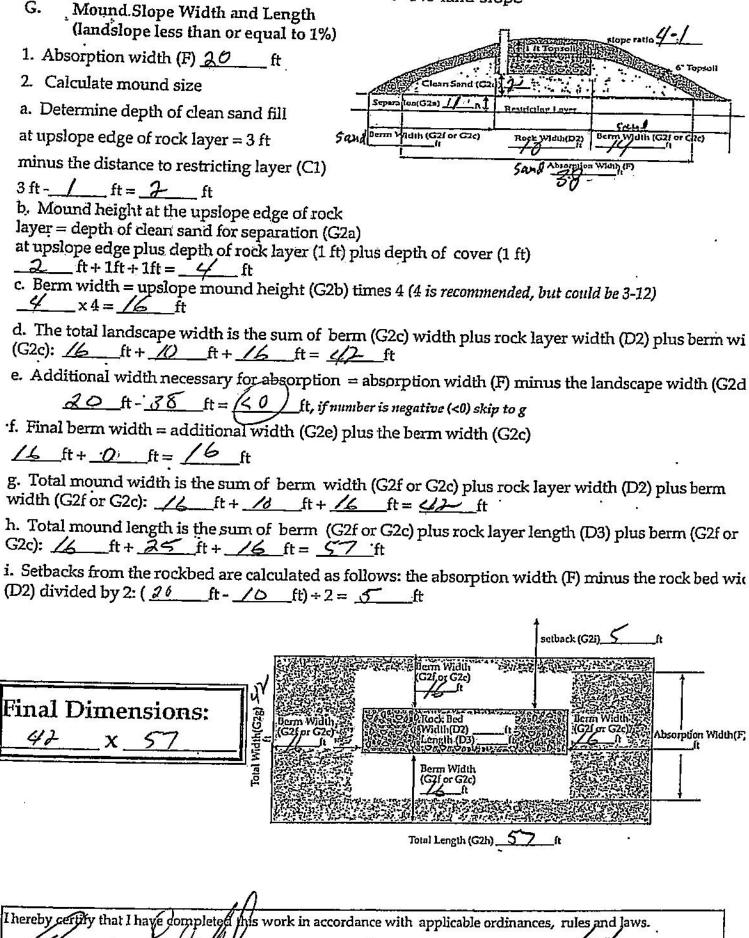
FIELD EVALUATION SHEET PRELIMINARY EVALUATION DATE 10/16/2/ FIELD EVALUATION DATE 10/ PROPERTY OWNER: Dean SuperLine PHONE 952-45/-ADDRESS: 15263 214 TA ADE CIFY, STATE, ZIP: Mc GRATTI MN 56350 LEGAL DESCRIPTION: PIN# 38-0-009/00 SEC 6 T 43 R22 TWP NAME WILLIAMS FIRE# × LAKE/RIVER LAKE CLASS X OHWL & **DESCRIPTION OF SOIL TREATMENT AREAS** AREA #1 AREA #2 REFERENCE BM ELEV. 12 8 DISTURBED AREAS YES NO ! YES NO REFERENCE BM DESCRIPTION COMPACTED AREAS YES NO 🔯 YES NO FLOODING YES NO. K YES NO RUN ON POTENTIAL YES NO K YES ' NO _ SLOPE % DIRECTION OF SLOPE LANDSCAPE POSITION **VEGETATION TYPES** DEPTH TO STANDING WATER OR MOTTLED SOIL: BORING# 1 13, 1A 12, 2 ,2A BOTTOM ELEVATION-FIRST TRENCH OR BOTTOM OF ROCK BED: #1+2 FT., #2 FT. SOIL SIZING FACTOR: SITE #1 /67 , SITE #2 CONSTRUCTION RELATED ISSUES: WORLD LIC# 4 2006 SITE EVALUATOR SIGNATURE: Dave Extended

SOIL BORING LOGS ON REVERSE SIDE

SITE EVALUATOR NAME: DAUR ENGLANC TELEPHONE# 572-360 L


DATE

LUG REVIEW

Comments:

MOUND DESIGN WORK SHEET (For Flows up	to 120	00 gpd)	70.000			
A. Average Design FLOW		A-1: Estimated Sewage Flows in Gallons per Day				
Estimated 300 gpd (see figure A-1) or measured x 1.5 (safety factor) = gpd	numbe bedroo 2	ms C	ioss i 300	Class 225	180	III Class IV 60%
B. SEPTIC TANK Capacity	4 5		450 500 750 700	300 375 450	256 294	of the value:
gallons (see figure C-1)	6 7 8	10	150 200	525 600 675	370 408	Class I II, or II column
C. SOILS (refer to site evaluation)		C-1: Septic	Tank Cap	acitles (in g	allons)	
 Depth to restricting layer = /+ feet Depth of percolation tests = feet 		Number of Bedrooms	Minimu Capa	m Liquid ecity	Liquid capacity garbage dispos	
3. Texture Line 14-30 mpi		2 or less 3 or 4 5 or 6 7, 8 or 9		750 1000 1500 1000	1125 1500 2250 3000	1500 2000 3000 4000
4. Soil loading rate gpd/sqft (see figure 5. Percent land slope%	: D-33)					
D. ROCK LAYER DIMENSIONS		3 10	12			<u> </u>
 Multiply average design flow (A) by 0.83 to obtain	8-36		1 5 68			
$0.83 \text{sqft/gpd} \text{x} \frac{12}{2} \text{gpd/sqft} = \frac{10}{2}$	ft		1		nd LLI	5
3. Length of rock layer = area ÷ width = sqft (D1) ÷ ft (D2) = ft						<u><</u> 12
E. ROCK VOLUME		2			MPI	
 Multiply rock area (D1) by rock depth of 1 ft to get 250 cuft Divide cuft by 27 cuft/cuyd to get cubic yards 250 cuft ÷ 27 cuyd/cuft = 7.2 cuyd Multiply cubic yards by 1.4 to get weight of rock ir cuyd x 1.4 ton/cuyd = /2.7 tons 		feet of ro	ck			
		D-33: Abso	rption W	idth Slzin	g Table	
F. SEWAGE ABSORPTION WIDTH		Percolation In Minutes Inch (MPI)		l Texture	Loading Rate Gallons per day per square fool	Absorption Ratio
Absorption width equals absorption ratio (See Figure D- times rock layer width (D2)	-33)	Fauer than	Med Los Fi	arse Sand Sum Sand amy Sand as Sand as Sand	1.20	1.50
		16 to 30 31 to 45		Loom It Loom Silt	70.00	270
16 x 20 ft = 20 ft		4610,60	Siliy	Clay Loan Clay Loam Ly Loam	0.45	2.67
		61 to 120	Sa.	lly Clay ally Clay Clay	0.24	5.00
6		Slower than	20.		l	

*System designed for these saids must be reber or performance

(signature) 22006 (license #)

<u> </u>	PERCENT SLOPE OF ORIGINAL SOIL	<u>/0</u> ft. _x <u>25</u> ft.si	ZE OF ROCKBED	38 FT. x 47 FT. SI	ZE OF SANDBASE
GEOTEXT	TLE CLOTH			.4 INCHES OF TOPSOIL FO	OR .
	ORIGINAL GRADE	O O 9" ROCK BELOW DISTRI	7/	14 INCHES OF SAI TAPERING TO 8	NDY LOAM SOIL INCHES
ļ c	UPSLOPE SAND WIDTH	WIDTH OF ROCKBED	——————————————————————————————————————	14 FEET DOWNSLOPE SAND WIDTH	1
	UPSLOPE COVER WIDTH	WIDTH OF ROCK	- *		

PRESSURE DISTRIBUTION SYSTEM

- 1. Select number of perforated laterals _____3
- 2. Select perforation spacing = 2.5 ft
- Since perforations should not be placed closer than 1 foot to the edge of the rock layer (see diagram), subtract 2 feet from the rock layer length.

Determine the number of spaces between perforations.
 Divide the length (3) by perforation spacing (2) and round down to nearest whole number.

Perforation spacing = $\frac{23}{100}$ ft + $\frac{2.5}{100}$ ft = $\frac{9}{100}$ spaces

 Number of perforations is equal to one plus the number of perforation spaces(4). Check figure E-4 to assure the number of perforations per lateral guarantees <10% discharge variation.

9 spaces + 1 = 10 perforations/lateral

6. A. Total number of perforations = perforations per lateral (5) times number of laterals (1)

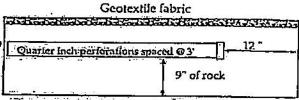
10 perfs/lat x 2 lat= 30 perforations

B. Calculate the square footage per perforation.

Should be 6-10 sqft/perf. Does not apply to at-grades.

Rock bed area = rock width (ft) x rock length (ft)

12 ft x 25 ft = 25 sqft

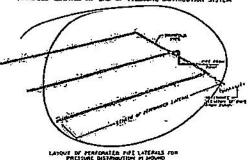

Square foot per perforation = Rock bed area + number of perfs (6).

250 sqft + 30 perfs = 83 sqft/perf

 Determine required flow rate by multiplying the total number of perforations (6A) by flow per perforation (see figure E-6).

30 pers x 74 gpm/pers = 22.2 gpm

- 8. If laterals are connected to header pipe as shown on upper example, to select minimum required lateral diameter; enter figure E-4 with perforation spacing (2) and number of perforations per lateral (5) Select minimum diameter for perforated lateral = ______ inches.
- 9. If perforated lateral system is attached to manifold pipe near the center, lower diagram, perforated lateral length (3) and number of perforations per lateral (5) will be approximately one half of that in step 8. Using these values, select minimum diameter for perforated lateral = ______ inches.


Perf Sizing 3/16" - 1/4" Perf Spacing 1.5'- 5'

perforation		1	<u> </u>	•
specing (leel)) inch	1.25 Inch	1.5 inch	20 inch
(25)	8	. 14	: 18	28
3.0	8	13	, 17	26
3.3	7	12	16	25
4.0	7	11 :	15	23
5.0	á :	Ø	. 14	22

head		ration c inches)) -
(feet)	1/8	3/16	7/32	1/4
1.0ª	0.18	0.42	0.56	0.74
2.0b	0.26	0.59	0.80	1.04
5.0	0.41	0,94	1.26	1.65

b Use 2.0 feet for anything alse.

MANIFOLD LOCATED AT DIG OF PRESSURE DISTRIBUTION STITCH

Franchischer Steine seine sein

I hereby certify that I have completed this work in accordance with applicable ordinances, rules and laws.

PUMP SELECTION PROCEDURE

1. Determine pump capacity:

A. Gravity distribution

- 1. Minimum required discharge is 10 gpm
- Maximum suggested discharge is 45 gpm. For other establishments at least 10% greater than the water supply rate, but no faster than the rate at which effluent will flow out of the distribution device.

B. Pressure distribution

See pressure distribution work sheet

From A or B Selected pump capacity: 22.2 gpm

From A of B Selected pump capacity. Jan gpm	
2. Determine pump head requirements:	
A. Elevation difference between pump and point of discharge?	soil treatment system
_7.2feet	& point of discharge
B. Special head requirement? (See Figure at right - Special Head Requirements	total pipe length
feetinlet_[2A. elevolion
C. Calculate Friction loss pipe	difference
1. Select pipe diameterin	
2. Enter Figure E-9 with gpm (1A or B) and pipe diameter (C1).	
Read friction loss in feet per 100 feet from Figure E-9	Special Head Requirements
	Gravity Distribution 0 ft
3. Determine total pipe length from pump discharge to soil treatment	Pressure Distribution 5 ft
discharge point. Estimate by adding 25 percent to pipe length for	
fitting loss. Total pipe length times 1.25 = equivalent pipe length	E-9: Friction Loss in Plastic Pipe
20 feet x $1.25 = 25$ feet	Per 100 feet
4. Calculate total friction loss by multiplying friction loss (C2)	lanimon
6 (400 61 47) 1 1 1 1 4 (70) 1 1 1 1 7 400	wing distraint

E-4. LIICHON FOSS IN LIGSUE LIDS						
Per 100 feet						
	nominol					
	pipe diameter_					
llow raje	1.5"	2"	3"			
gpm		-				
20	2.47	0.73	0.11			
25	3.73	1,11	0.16			
30	5.23	1.55	0.23			
35	6.96	2.06	0.30			
40	8.91	2.64	0.39			
45	11.07	3.28	0.48			
50	13.46	3.99	0.58			
55		4.76	0.70			
60		5.60	0.82			
65		6.48	0.95			
70	1	7.44	1.09			

Determine total pipe length from pump discharge to soil treatm
discharge point. Estimate by adding 25 percent to pipe length for
fitting loss. Total pipe length times 1.25 = equivalent pipe length
2D feet x $1.25 = 25$ feet
4. Calculate total friction loss by multiplying friction loss (C2)
in ft/100 ft by the equivalent pipe length (C3) and divide by 100.
$= \frac{1}{1} \frac{1}{100 \text{ ft}} \times \frac{25}{100} = \frac{5}{100} \text{ ft}$
D. Total head required is the sum of elevation difference (A), special head requirements (B), and total friction loss (C4) 22 ft + 5 ft + 3 ft =
Total head:feet
3. Pump selection
A pump must be selected to deliver at least 22.2 gpm (1A or B) with at least 12.5 _ feet of total head (2D)
I hereby certify that I have completed this work in accordance with applica

I hereby certify that I have completed	this work in accor	dance with applicable ordina	nces, rules and laws.	
I hereby certify that I have completed to	(signature)	12006 (license #)	10/18/2011 (date)	

38-8-059120 15263 214 Thave ROOD FRABLE BLOCKY 7.54 R 3/3 8-13 FIRM Roots 13-15 SAND resur FIREM Relay Disting 19/14 1,00 Topoquell 966 Liesthone 0-7 735yr 3/3 Purp het. 95.6 97.6 12-15 Send Loan 7.7 Puplift Redox at 13' 7,54R 4/3 c2006 10/18/21