

INDIVIDUAL SEWAGE SYSTEM DESIGN SUMMARY

Property Owner: Joel Schilling	Phone: 651-270-8460					
Address: 38039 State Hwy 18	Township: <u>36-0-033302</u>					
City: Aitkin Zip: 56431	County: <u>Aitkin</u>					
DESIGN USAGE	SITE CHARACTERISTICS					
Single Family Home X Other	Soil type Fine Sand					
Number of Potential Bedrooms 3	Hydraulic Loading0.60 gpd/ft2					
Garbage Disposal <u>No</u>	Depth to restrictive layer12"					
Sewage Lift Pump <u>No</u>						
PUMP INFORMATION	CAPACITIES 450					
Pump GPM & TDH 29.0' GPM & 17.6' TDH	Daily Water Use Est Calcgpd					
Cycles per day <u>5 cycles</u>	Septic Tank Capacity <u>1000 Gallons (Combo Tank)</u>					
Gallons per cycle 80 gallons	Pump Tank Capacity 500 Gallons					
Perforation size & spacing	MOUND SYSTEM					
diameter of laterals <u>3 - 1 ½" laterals every 36"</u>	Dimension of Rock Base <u>10' x 38'</u>					
Forcemain Size2"	Depth of Rock Below Pipe9"					
TRENCH SYSTEM	Dimensions of Mound 40' x 68'					
Type of trench	% Slope of Soil Under Mound 0%					
Maximum Depth of trench	Upslope Dike Width 15'					
Square Feet of bed Required	Downslope Dike Width 15'					
Square Feet of bed Proposed	Sideslope Dike Width 15'					
Lineal Feet of bed Proposed						

Date 10/21/2019

Melissa Besser License #2624 See additional information sheet if checked

 \boxtimes

By

Property Owner:

Joel Schilling 38039 State Hwy 18 - Aitkin, MN 56431

Description of Wastewater Treatment and Dispersal System

This design is for a Type I, 3-bedroom, Class I home that does not have a garbage disposal or sewage pump in the basement. The property currently consists of two septic systems that did not pass a compliance inspection on 10/4/19 for soil separation.

The system for the 3-bedroom home is located on the north side between the home and garage. The existing tank will not be reused in this design due to age; it will need to be pumped and properly abandoned. There are two 4" lines exiting the home, but homeowner is not sure where they connect outside. Installer must locate each line and ensure they both get connected to the new septic tank. Sewage will flow by gravity through 4" SCH 40 pipe 123' from the home to the septic tank. A cleanout will be installed at 88' just before the driveway that leads into the garage. From there 35' of 4" SCH 40 *insulated* pipe is to be installed under the driveway to the new 1,500-gallon, two compartment septic/pump tank. The 1,000-gallon compartment is to be used for the septic and the 500-gallon compartment as the pump tank. All manholes will need to be installed to grade for ease of servicing, and the pump installed must deliver at least 29.0 GPM and 17.6 TDH. Effluent will then be dosed to a 10' by 38' rockbed mound built with a 2.0' clean sand lift which will have lateral cleanouts and inspection pipes to grade. The homeowner will need to remove the raised garden and fencing around the staked rockbed area prior to installing the new drainfield.

The second system is located south of the home near the lake that has a seasonal RV connected to it. This system will not be rebuilt to meet compliance criteria so the installer will pump and properly abandon the septic tank and cap off the drainfield.

It is the installer's responsibility to make sure the septic system is seeded and mulched prior to final completion.

Keep all vehicles and construction equipment off septic area. Rutting and/or compacting the soil will change the percolation rates and may lead to system failure.

Homeowner to verify all property lines.

Elevations are referenced to Bench Mark on the concrete in the NW corner of garage marked with pink spray paint.

Installer to verify all elevations, dimensions, and ensure proper fall to pipes. Pitch pump chamber outlet to ensure complete drainback to pump chamber.

Establish turf to prevent erosion and freezing.

Each tank is to be pumped through the maintenance cover when serviced. Do not pump through inspection pipes.

Homeowner is responsible for all costs involved in servicing, monitoring, and mitigating the system.

All construction to be performed in accordance with MN Rule 7080 and the Aitkin County septic ordinance.

Maintenance Requirements

See attached operating permit or management plan for details

Joel Schilling 38039 State Hwy 18 - Aitkin, MN 56431

EXISTING TANK AND DRAINFIELD AREA

BENCHMARK

NEW TANK LOCATION

NEIGHBORING HOME WITH SHALLOW WELL.

STAKED 100' SETBACK

WASHTUB ONLY WHICH IS CONNECTED TO A PUMP THAT GOES INTO THE SEPTIC SYSTEM.

OLD PLUMBING THAT GOES OUT TO THE SEPTIC SYSTEM ON ITS OWN 4" LINE.

NEWER PLUMBING THAT ALSO GOES OUT TO THE SEPTIC SYSTEM ON ITS OWN 4" LINE.

OSTP Design Summary Worksheet

University of Minnesota

Property Owner/Client: Joel Schilling	Project ID:	v 07.14.15								
Site Address: 38039 State Hwy 18, Aitkin, MN. 56431	Date:	10/21/19								
1. DESIGN FLOW AND TANKS										
A. Design Flow:450Gallons Per Day (GPD)Note: The estimated design flow is considered a peak flow rate including a safety factor. For long term performance, the average daily flow is recommended to be < 60% of this value.										
Minimum Code Required Septic Tank Capacity: 1000 Gallons, in 1	Tanks or Compar	tments								
Recommended Septic Tank Capacity: 1000 Gallons, in 1	Tanks or Compar	tments								
Effluent Screen: Alarm:										
C. Holding Tanks Only:										
Minimum Code Required Capacity: Gallons, in	Tanks									
Designer Recommended Capacity: Gallons, in	Tanks									
Type of High Level Alarm:										
D. Pump Tank 1 Capacity (Code Minimum): 500 Gallons Pump Tank 2 Capacity (Code	de Minimum):	Gallons								
Pump Tank 1 Capacity (Designer Rec): 500 Gallons Pump Tank 2 Capacity (Designer Rec):	signer Rec):	Gallons								
Pump 1 29.0 GPM Total Head 17.6 ft Pump 2 GPM	Total Head	ft								
Supply Pipe Dia. 2.00 in Dose Volume: 80.0 gal Supply Pipe Dia.	in Dose V	/olume: gal								
2. SYSTEM TYPE										
O Trench O Bed Mound O At-Grade O Gravity Distribution Pressure Distribution Drip O Holding Tank O Other * Selection Required Benchmark El Benchmark L	ution-Level O Press levation: 100. Location: Foundati	on NW Garage Corner								
System Type Of Dist	ribution Media:									
Type I Type II Type III Type IV Type V Drainfield R	Drainfield Rock Registered Treatment Media:									
3. SITE EVALUATION:										
A. Depth to Limiting Layer: 12 in 1.0 ft B. Measured Land	I Slope %: 0.	0 %								
C. Elevation of Limiting Layer: 97.2 D. Soil	Texture:	Fine Sand								
E. Loc. of Restricive Elevation: SE Rockbed Corner F. Soil Hyd. Load	ing Rate: 0.6	GPD/ft ²								
G. Minimum Required Separation: 36 in 3.0 ft H. P	erc Rate:	MPI								
I. Code Maximum Depth of System: Mound in Comments:										
4. DESIGN SUMMARY										
Trench Design Summary										
Dispersal Area ft ² Sidewall Depth in	Trenc	h Width ft								
Total Lineal Feet ft Number of Trenches Co	ode Maximum Trenc	h Depth in								
Contour Loading Rate ft D	esigner's Max Trenc	h Depth in								
Bed Design Summary										
Absorption Area ft ² Depth of sidewall in	Code Maximum Be	d Depth in								
Bed Width ft Bed Length ft	Designer's Max Be	d Depth in								

OSTP Design Summary Worksheet

					Moun	d Design	Summai	ry						
Absorption Bed Area 380.0				ft ²	Be	d Length	38	.0	ft	E	Bed Width	10.0	ft	
	Absorptio	n Width 20	0.0	ft	Clean	Sand Lift	2.	0	ft	Berm Wid	th (0-1%)	15.0	ft	
	Upslope Bern	n Width 1	5.0	ft Downslope Berm Width			15	.0	ft	Endslope Be	erm Width	15.0	ft	
	Total System	Length 68	8.0	ft	Total Syste	em Width	40	.0	ft	Contour Loa	ding Rate	12.0	gal/1	ft
		. <u></u>			At-Gra	de Design	n Summa	ary	-					
	Absorption Bee	d Width	1	ft	Absorption Be	ed Length			ft		System H	leight		ft
Contour Loading Rate gal/ft Upslope Berm Width									lft	Down	slope Berm V	Width		
	Endslope Bern	n Width	i	ft	Syster	m Length			ft		System	Width		ft
	Level & Equal Pressure Distribution Summary													
No	o. of Perforated L	Laterals	3		Perforation	n Spacing	3	}	lft	Per	foration Diar	neter	1/4	lin
	Lateral Di	iameter 1.	.50 i	in	Min. Delivered	d Volume	4	8	gal	Maximum	Delivered Vo	olume	113	gal
	Non-Level and Unequal Pressure Distribution Summary													
	Elevation (ft)	Pipe Size (in)	Pipe Vo (gal/	olume (ft)	Pipe Length (ft)	Perforati (in	on Size	Spaci	ng (ft)	Spacing (in)				
Lateral 1				,			,				Minimu	ım Deliver	ed Volur	ne
Lateral 2													gal	
Lateral 3														
Lateral 4											Maximu	ım Deliver	red Volur	ne
Lateral 5													gal	
Lateral 6														
5. Ad	dditional Info for	r Type IV/Preti	reatmen	t Desig	gn									
A. Co	alculate the orgo	anic loading												
1. <i>O</i> i	rganic Loading to	o Pretreatment	Unit = L	Design	Flow X Estima	ted BOD i	in mg/L	in the	effluent	t X 8.35 ÷ 1,000	0,000			
		gpd X			mg/L X 8.35 ÷	1,000,000	0 =			lbs BOD/day				
2. Ty	/pe of Pretreatme	ent Unit Being	Installed	:						1				
3. Ca	alculate Soil Trea	atment System	Organic	Loadin	g: BOD concen	tration af	ter pret	treatme	ent ÷ Bo	ottom Area = l	bs/day/ft ²		1	
		mg/L X 8.35 ÷	1,000,00)0 ÷		ft ² =			lbs/da	v/ft ²	-			
Commen	ts/Special Design	, Consideratio	ns•			1 T			1	,,				
		reonsideratio												
	l hereby cer	rtify that I have	e comple	ted th	is work in acco	rdance wi	th all ar	oplicabl	le ordin	ances, rules an	d laws.			
		2				P								
	Meliss	sa Besser			1922	-JSa	2624			2624		10/2	1/19	
	(De	signer)			(Sig	nature)			(L	License #)		(Da	te)	

University of Minnesota

Minnesota Pollution Control Agency

OSTP Mound Design Worksheet <1% Slope

1.	SYSTEM	SIZIN	G:		Р	roje	ct ID:		-			,	v 07.14.15
A. Design Flow :					450		GPD			TAB	LE IXa	l	
	B. Soil Loa	ding R	ate:		0.60)	GPD/ft	t ²	LOADING RATES F AND ABSORP	OR DETERM	INING BOTT S USING PE	OM ABSORP	TION AREA TESTS
	C. Depth t	o Limi	ting Condition:	1.0		ft		Percolation Rate	Treatmen Absorption	t Level C	Treatment Le Absorption	Wound	
	D. Percent	Land	Slope:	0.0		%		(MPI)	Area Loading Rate (gpd/ft ²)	Absorption Ratio	Area Loading Rate (gpd/ft ²)	Absorption Ratio	
	E. Design Media Loading Rate:				1.2		GPD/ft	t ²	<0.1	•	1	•	1
	F. Mound Absorption Ratio:				2.00)		(0.1 to 5 0.1 to 5 (fine sand and loamy fine sand)	0.6	2	1.6	1.6
			Table I					(6 to 15	0.78	1.5	1	1.6
		MOUN	D CONTOUR LOADING	6 RAT	ES:			ŀ	16 to 30	0.6	2	0.78	2
	Moasurod	←	Toxturo - dorivod			Cor	ntour	:	31 to 45	0.5	2.4	0.78	2
	Perc Rate	OR	mound absorption ra	tio	- 1	Loa	ding	ŀ	46 to 60	0.45	2.6	0.6	2.6
		\rightarrow	-	_	- H	Ra	ite:	é	61 to 120	-	5	0.3	5.3
	≤ 60mpi		1.0, 1.3, 2.0, 2.4, 2	.6	→	≤	12	Ľ	>120	-	•	-	-
	61-120 mpi ≥ 120 mpi*	← OR →	5.0 >5.0*		\rightarrow	VI VI	12	*(Systems with Contour Load	these valı ding Rate recomme	ues are n (linear l ended val	ot Type I oading ra .ue.	systems. te) is a
2.	DISPER	SAL M	EDIA SIZING										
	A. Calculat If B. Enter D C. Calculat D. Calculat	te Disp 45 a larg ispersa te Con 10 te Min 38	persal Bed Area: Des 0 GPD ÷ er dispersal media a al Bed Width: tour Loading Rate: 0 ft ² X 1 imum Dispersal Bed 0 ft ² ÷ 1	area Bed .2 Leng 0	Flow 1.2 is de 10 Widt Gl gth: ft	(1.A esire h (2. PD/f Dispo	a) ÷ Des GPD/ft d, enter ft .B) X De t ² = [ersal Be 38	igr t ² r s Ca esig	n Media Loadii = 375 ize: 380 in not exceed gn Media Loac 12.0 ga Area (2.A) ÷ E	ng Rate (* ft ² <i>10 feet.</i> ling Rate l/ft Bed Width	1.E) = ft ² (1.E) <i>Can no</i> (2.B) = 1	<i>t exceed</i> Bed Lengt	<i>Table 1</i> :h
3.	ABSORF	PTION	AREA SIZING										
	A. Calculat B. For slop Absorpt (te Abs 10 bes fro ion Wi 20	orption Width: Bed 0 ft X 2. m 0 to 1%, the Abso dth Beyond the Bed 0 ft - 10	Widt .0 rptic l: Ab: 0.0	h (2.) on W sorpt	.B) X = idth tion) ÷	Mound 20 is meas Width (2	Al .0 .3.	osorption Rati ft ed from the b A) - Bed Widtl = 5.0	io (1.F) = ped equal n (2.B) ÷ ; ft	Absorpti ly in both 2 = Width	on Width n directio n beyond	ns. Bed

4.		DISTRIBUTION MEDIA: ROCK
	A.	Media Volume: Media Depth below and above pipe X Length X Width
		0.75 ft X 38.0 ft X 10.0 ft = 285 ft ³ ÷ 27 = 10.6 yd^3
5.		DISTRIBUTION MEDIA: REGISTERED TREATMENT PRODUCTS: CHAMBERS AND EZFLOW
	A.	Enter Dispersal Media:
	B.	Enter the Component: Length:ft Width:ft Depth:ft
	c.	Number of Components per Row = Bed Length divided by Component Length (Round up)
		ft ÷ ft = components/row
	D.	Actual Bed Length = Number of Components/row X Component Length: components X ft = ft
	E.	Number of Rows = Bed Width divided by Component Width
		ft ÷ ft = rows Adjust width so this is an whole number.
	F.	Total Number of Components = Number of Components per Row X Number of Rows
		X = components
6.		MOUND SIZING
	Α.	Calculate Clean Sand Lift: 3 feet minus Depth to Limiting Condition = Clean Sand Lift (1 ft minimum)
		3.0 ft - 1.0 ft = 2.0 ft Design Sand Lift (optional): 2.0 ft
	Β.	Upslope Mound Height = Clean Sand Lift + Depth of Media + Depth of Cover (1 ft)
		2.0 ft + 0.75 ft + 1.0 ft = 3.8 ft
	c.	Berm Width = Upslope Mound Height (4.B) X 4 (4 is recommended, but could be 3-12)
		3.8 ft X 4.0 ft = 15.0 ft
	D.	Total Landscape Width = Berm Width + Dispersal Bed Width + Berm Width
		15.0 ft + 10.0 ft + 15.0 ft = 40.0 ft
	Ε.	Additional Berm Width necessary for absorption - Absorption Width - Total Landscape Width
		20.0 ft - 40.0 ft = 0 ft if number is negative (<0), value is ZERO
	F.	Final Berm Width = Additional Berm Width + Berm Width
		0 ft + 15.0 ft = 15.0 ft
	G.	Total Mound Width = Final Berm Width + Dispersal Bed Width + Final Berm Width
		15.0 ft + 10.0 ft + 15.0 ft = 40.0 ft
	н.	Total Mound Length = Final Berm Width + Dispersal Bed Length + Final Berm Width
		15.0 ft + 38.0 ft + 15.0 ft = 68.0 ft
	I.	Setbacks from the Bed: Absorption Width - Dispersal Bed Width divided by 2
	(20.0 ft - 10.0) / 2 = 5.0 ft

OSTP Mound Materials Worksheet

Project ID:	v 07.14.									
A. Calculate Bed (rock) Volume : Bed Length (2.C) X Bed Width (2.B) X Depth = Volume (ft ³)										
38.0 ft X	10.0 ft X 1.0 = 380.0 ft ³									
Divide ft^3 by 27 ft^3 /yd ³ to a	Divide ft^3 by 27 ft^3/yd^3 to calculate cubic yards:									
	380.0 ft ³ ÷ 27 = 14.1 yd ³									
Add 20% for constructability:	14.1 yd x 1.2 = 10.7 yd									
B. Calculate Clean Sand Volume:										
Volume Under Rock bed: Average Sand Depth x Media Width x Media Lei	$\frac{\log t}{\log t} = \frac{\log t}{\log t}$									
	0.0 It x 30.0 It - 005.0 It									
For a Mound on a slope from 0-1%										
Volume from Length = ((Upslope Mound Height - 1) X Absorption Width Be	yond Bed X Media Bed Length)									
Volume from Width = ((Upslope Mound Height - 1) X Absorption Width Bey	ond Bed X Media Bed Width)									
3.75 ft - 1) X 5.00 X	10 Tt = 137.50									
Total Clean Sand Volume : Volume from Length + Volume from Width + V	olume Under Media									
522.5 ft ³ + 137.5	ft ³ + 665 ft ³ = 1325.0 ft ³									
For a Mound on a slope greater than 1%										
Upslope Volume : ((Upslope Mound Height - 1) x 3 x Bed Length) ÷ 2 = cu	Upslope Volume : ((Upslope Mound Height - 1) x 3 x Bed Length) ÷ 2 = cubic feet									
((ft - 1) X 3.0 ft	X)÷2 =ft3									
Downslope Volume : ((Downslope Height - 1) x Downslope Absorption Wid	Downslope Volume : ((Downslope Height - 1) x Downslope Absorption Width x Media Length) ÷ 2 = cubic feet									
((ft - 1) X	ft X) ÷ 2 = ft ³									
Endslope Volume : (Downslope Mound Height - 1) x 3 x Media Width = cubic feet										
(ft - 1) X 3.0 ft	X $ft = ft^3$									
Total Clean Sand Volume : Upslope Volume + Downslope Volume + Endslu	ope Volume + Volume Under Media									
$ft^3 + ft^3 + $	$ft^3 + ft^3 = ft^3$									
Divide ft ³ by 27 ft ³ /yd ³ to calculate cubic yards:	1325.0 $ft^3 \div 27 = 49.1$ yd^3									
Add 20% for constructability:	49.1 $yd^3 X$ 1.2 = 58.9 yd^3									
C Calculate Sondy Berm Volume										
Total Berm Volume (approx): ((Avg. Mound Height - 0.5 ft topsoil) x Mour	nd Width x Mound Length) ÷ 2 = cubic feet									
(3.8 . 0.5)ft X 4	0.0 ft X 68.0) ÷ 2 = 4420.0 ft ³									
Total Mound Volume - Clean Sand volume -Rock Volume = cubic feet										
$\frac{4420.0}{\text{ft}^3} = \frac{13}{13}$	25.0 $ft^3 = 380.0 ft^3 = 2715.0 ft^3$									
Divide ft ³ by 27 ft ³ /yd ³ to calculate cubic yards:	2715.0 ft ³ ÷ 27 = 100.6 yd ³									
Add 20% for constructability:	100.6 $yd^3 x$ 1.2 = 120.7 yd^3									
D. Calculate Topsoil Material Volume: Total Mound Width X Total Mound La	nath X 5 ft									
40.0 ft X 6	8.0 Ift X 0.5 ft = 1360.0 ft^3									
Divide ft ³ by 27 ft ³ /yd ³ to calculate cubic yards:	1360.0 $ft^3 \div 27 = 50.4$ yd^3									
Add 20% for constructability:	50.4 $ud^3 v = 1.2$ $ 60.4$ u^3									
Aug 20/0 101 Constructability.	ya x 1.2 = 00.4 ya									

	OSTP Pressure Distribution					
Minnesota Pollution Control Agency	Design Worksheet	OF MINNESOTA				

Cor	itrol Agency			zəlgi								
						Project	ID:				Ņ	v 07.14.15
1.	Media Bed Widtl	h:					10 ft					
2.	Minimum Numbe	er of Lat	erals in	system	zone =	Roundeo	d up number of [(Media I	Bed Wid	th - 4) ÷	3] + 1.	
	(10 - 4) + 1 = 3 laterals Does not apply to at-grades								-grades			
3.	3. Designer Selected Number of Laterals:						3 late	laterals				
4.	4. Select Perforation Spacing :					, 	3.0 ft					
5. Select Perforation Diameter Size:							 1/4 in	1/4" perforat	tions spaced 3' ap	oart ↓1"-2"	am of rock) - 12- +
6.	Length of Later	als = Me	edia Bed	Length	- 2 Feet			Perf	oration sizing: ¼	to 1/4" Perfor	ation spacing: 2*	to 3°
	38	- 2f	t =	3	36 I	ft P	erforation can n	ot be cl	oser the	n 1 foot	from ea	dge.
7.	Determine the <i>N</i> round down to t	<i>lumber</i> he near	<i>of Perfo</i> est whol	ration S e numb	<i>paces</i> . er.	Divide	he Length of La	terals b	by the P	Perforati	on Spaci	ing and
	Number of Perforation Spaces = 36 ft ÷ 3 ft = 12 Spaces							aces				
8.	Number of Perfo to verify the nu double with a co	orations mber of enter ma	<i>per Lat</i> perforat anifold.	eral is o tions pe	equal to r lateral	1.0 plu I guaran	s the <i>Number of</i> tees less than a	<i>Perfora</i> 10% disc	tion Spa harge v	aces. Cl ariation.	neck tab The va	le below Ilue is
		foratior	ns Per Lo	iteral =	12	2 SI	oaces + 1 =		13	Perfs. P	er Later	al
		Max	imum Num	ber of Perf	forations P	er Lateral	to Guarantee <10% D	ischarge Va	ariation	-		
		1/4 Inch I	rertoration	s			7/32 Inch Perforations					
Perfo	oration Spacing (Feet)	4	Pipe D 416	nameter (I	nches)	2	Perforation Spacing (Feet)	1	116 Pipe I	Jiameter (I	ncnes)	2
	2	10	13	18	30	60	2	11	16	21	34	68
	21/2	8	12	16	28	54	21/2	10	14	20	32	64
	3	8	12	16	25	52	3	9	14	19	30	60
		3/16 Inch	Perforatio	ns				1/81	nch Perfor	ations		
Perfo	oration Spacing (Feet)		Pipe D	iameter (l	nches)		Perforation Spacing		Pipe I	Diameter (I	nches)	
		1	11/4	11/2	2	3	(Feet)	1	114	11/2	2	3
	2	12	18	26	46	87	2	21	33	44	74	149
	202	12	1/	24	40	80	292	20	30	41	69	135
	3	12	16	11	3/	/5	3	20	29	38	64	128
9.	Total Number o Perforated Late	f Perfor erals.	ations e	equals th	ne Numb	oer of Pe	erforations per L	ateral I	multiplio	ed by th	e Numbe	₽r of
	13 Pe	rf. Per L	_at. X		3	Number	of Perf. Lat. =		39	Total Ni	umber of	f Perf.
10.	Select Type of N	Manifold	l Connec	<i>tion</i> (Er	nd or Ce	nter):	🗹 End 🗌 Ce	enter				
11.	Select Lateral D)iametei	r (See To	ible):		1.50) in					

Minne	sota Pollution	OSTF	Pressure	Distribu	tion UNI OF M	VERSI		
Con	trol Agency		Design wo	JIKSHEEL	01 111		om	
12.	Calculate the Squ	are Feet p	er Perforation. Rec	ommended value i	is 4-11 ft ² pe	er perfora	tion.	
	Does not apply t	o At-Grade	25					
a.	Bed Area = Bed	Width (ft)	X Bed Length (ft)					
	10 ft	x	38 ft	= 380	ft²			
b.	Square Foot per l	Perforation	= Bed Area divide	d by the <i>Total Nur</i>	nber of Perfo	rations .		
	380 ft ²	÷	39 perfora	tions = 9	.7 ft²/pe	erforation	s	
13.	Select Minimum	Average He	ad : 1.0 f	t		-		
14.	Select Perforatio	n Discharge	(GPM) based on Ta	ıble:	0.74	GPM per	Perforation	1
15.	Determine re	quired <i>Flow</i>	<i>Rate</i> by multiplyir	ng the Total Numbe	er of Perfs.	by the Pe	rforation Di	scharge.
	39 Perf	s X	0.74 GPM pe	r Perforation =	29	GPM		
16.	Volume of Liquid	Per Foot o	f Distribution Piping	g (Table II):	0.110	Gallons/	ft	
17.	Volume of Distrib	oution Pipin	<i>ig</i> =				Tab	le II
	= [Number of Per	forated Lat	terals X Length of L	aterals X (Volume	e of		Volume o	f Liquid in
	Liquid Per Foot o	f Distributio	on Piping]				Pi	pe
	3 X	36	ft X 0.11	0 gal/ft =	11.9	Gallons	Diameter	Per Foot
10	Minimum Dolivor	d Volumo -	- Volumo of Distribu	tion Diping V 4		_	(inches)	(Gallons)
10.		eu volume -					1.25	0.078
	11.9 gals	X 4 =	- 47.5	iallons			1.5	0.110
		manifold	pipe	7			2	0.170
		\sim	1				4	0.661
			pipe from pump	Cle	eanouts		~~~~``@	
				and the second sec	Manifold pipe			ទ
clean ou	its			1	T			
	L		alternate locati	on		A.		
			of pipe from pu			H	Alter of pi	nate location pe from pump
				PL-			Pipe from pur	ıp
Comm	ents/Special Desig	gn Consider	ations:					
L								

Minnesota Pollution	
Control Agency	

OSTP Basic Pump Selection Design University Worksheet OF Minnesota

1.	PUMP CAPACITY	Projec	ct ID:						
	Pumping to Gravity or Pressure Distr	ibution: O Gravity	Pressure		Selectio	on require	ed		
	1. If pumping to gravity enter the gal	on per minute of the pump	:		GPM (10 - 45	gpm)			
	2. If pumping to a pressurized distribution	ution system:	29	.0	GPM				
	3. Enter pump description:			Dema	nd Dosing Soil Tre	atment		Soil tr	atmont system
2.	HEAD REQUIREMENTS							& poi	nt of discharge
Α.	Elevation Difference	12 ft					length		<u>a0a.00</u> 0
	between pump and point of discharge	I				Supply line			
в.	Distribution Head Loss:	5 ft	nlet p	ipe o			Elevation difference		
c.	Additional Head Loss:	ft (due to special equ	uipment, etc.)					,	
_			_	Table L Frictio	on Loss i	n Plastic	Pipe pe	r 100ft	
	Distributio	n Head Loss			Elow Pate	Pin	e Diame	ter (inch	es)
G	ravity Distribution = 0ft				(GPM)	1	1.25	1.5	2
Р	ressure Distribution based o	on Minimum Average	e Head		10	9.1	3.1	1.3	0.3
V	alue on Pressure Distributio	on Worksheet:			12	12.8	4.3	1.8	0.4
_	Minimum Average Head	Distribution He	ad Loss		14	17.0	5.7	2.4	0.6
-	1ft 2ft	5ft 6ft			16	21.8	7.3	3.0	0.7
	5ft	10ft			18		9.1	3.8	0.9
				1	20		11.1	4.6	1.1
D	1 Supply Pipe Diameter:	2.0 in			30		23.5	9.7	2.4
υ.		2.0			35		25.5	12.9	3.2
	2. Supply Pipe Length:	20 ft			40			16.5	4.1
F	Friction Loss in Plastic Pipe per 100	t from Table I			45			20.5	5.0
					50				6.1
	Friction Loss = 2.23	ft per 100ft of pipe			55				7.3
F	Determine Fauivalent Pipe Length fro	 m nump discharge to soil di	spersal area di	scharg	60				8.6
••	point. Estimate by adding 25% to supp	bly pipe length for fitting lo	ss. Supply Pipe	,	70				11.4
	Length (D.2) X 1.25 = Equivalent Pipe	Length			75				13.0
	20 6 V 125	25.0			85				16.4
	20 It X 1.23	= 23.0	L		95				20.1
G.	Calculate Supply Friction Loss by mult	tiplying Friction Loss Per 10	Oft (Line E) by	the Eq	uivalent Pipe Len	gth (Line	F) and div	vide by 10	0.
	Supply Friction Loss =				<u> </u>				
	2.23 ft per 100ft	X 25.0 f	t ÷	100	= 0.	.6 f	t		
н.	Total Head requirement is the sum of the Supply Friction Loss (Line G)	the Elevation Difference (I	ine A), the Dis	tributio	on Head Loss (Line	e B), Addi	tional Hea	d Loss (Li	ne C), and
	12.0 ft +	5.0 ft +		ft +	0.6	ft =	17.6	ft	
2						L			
5.	A pump must be selected to deliver at	least 29.0 (GPM (Line 1 or L	ine 2)	with at least	17	6 fee	et of total	head.
Cor	nments:	27.0				.,	•		
-									
l									

OSTP Pump Tank Design Worksheet

University of Minnesota

	DETER	MINE TANK CAPACITY AND DIMENSIONS		Project ID:				v 07.14.15
1.	Α.	Design Flow (Design Sum.1A):	450	GPD				
	в.	Min. required pump tank capacity:	500	Gal C.Recommend	led pump tanl	k capacity:	500	Gal
	D.	Pump tank description:		Demand to Press	sure			
	MEASU	RED TANK CAPACITY (existing tanks):						
2.	Α.	Rectangle area = Length (L) X Width (W)					↑) A /: -141-
		ft X	ft =	ft ²				vvidtn
	В.	Circle area = 3.14r ² (3.1 <u>4 X radius X radius)</u>					↓	
		3.14 X	ft =	ft ²		 ▲ Lengt 	th	
	с.	Calculate Gallons Per Inch. Multiply the area f	rom 1.A or 1.B, t	by 7.5 to determine the	e gallons per f	foot		
		ft^2 X 7.5 gal/ft ³ ÷ 1	2 in/ft	. =	Gallons per	inch		
	D.	Calculate Total Tank Volume					K	adius
		Depth from bottom of inlet pipe to tank bottom	<i>m</i> :		in			
		Total Tank Volume = Depth from bottom of inl	et pipe (Line 4.A) X Gallons/Inch (Line	2)			
		in X 11.7	Gallons Per Inch	1 =	Gallons			
	MANUF	ACTURER'S SPECIFIED TANK CAPACITY (when a	available):					
3.	Α.	Tank Manufacturer: Brown Wilbert				Note: Desig	gn calculations a	re based on
	в.	Tank Model: 1500 Gal. Com	bo - Use 500 gal.	compartment		different i	tank model will	change the
	с.	Capacity from manufacturer:		507 Gallon	IS	pump floa designer	t or timer setting if changes are n	gs. Contact ecessary.
	D.	Gallons per inch from manufacturer:		11.7 Gallon	is per inch			
	E.	Liquid depth of tank from manufacturer:		43.0 inches	5			
DE	FERMINE	DOSING VOLUME						
4.	Calcula	te Volume to Cover Pump (The inlet of the pum	p must be at leas	t 4-inches from the bot	ttom of the			
	pump t	ank & 2 inches of water covering the pump is re	commended)					
	(Pump	and block height + 2 inches) X Gallons Per Inch	(2C or 3E)					
	(12 in + 2 inches) X 1	1.7 Gallons	Per Inch =	164	Gallons		
5.	Minim	um Delivered Volume = 4 X Volume of Distribut	ion Piping:					
	- Line 1	17 of the Pressure Distribution or Line 11 of Non	-level		48	Gallons (mi	nimum dose)	
6.	Calcula	te Maximum Pumpout Volume (25% of Design Fl	ow)		·			
	Design	Flow: 450 GPD X	0.25	=	113	Gallons (ma	aximum dose)	
7.	Select	a pumpout volume that meets both Minimum an	d Maximum:		80	Gallons		
8.	Calcula	te Doses Per Day = Design Flow ÷ Delivered Vol	ume	·		Volume of	f Liquid in	
	<u>.</u>	450 gpd ÷ 80	gal =	5 Doses		Pi	pe .	
9.	Calcula	Diameter of Supply Pipe -	-	inches		Pipe	Liquid	
	~.		"			Diameter	Per Foot	
	В.	Length of Supply Pipe =	2	0 feet		(inches)	(Gallons)	
	с.	Volume of Liquid Per Lineal Foot of Pipe =	0.1	70 Gallons/ft		1	0.045	
	D.	Drainback = Length of Supply Pipe X Volume o	f Liquid Per Lineo	Il Foot of Pipe		1.25	0.078	
		ft X0.1/0gal/ft	= 3	4 Gallons		1.5	0.110	
10.	Total D	Dosing Volume = Delivered Volume plus Drainba	ick	L		2	0.170	
4.4	Mi	80 gal + 3.4 gal =	83	Gallons		3	0.380	
11.	minimu	111 Atarm volume = Depth of alarm (2 or 3 inches)	r = 35	.2 Gallons		4	0.661	
1		gat/ii		- Guilding				

OSTP Pump Tank Design Worksheet

University of Minnesota

TIMER or DEMAND FLOAT SETTINGS					
Select Timer or Demand Dosing: O Timer	se				
A. Timer Settings					
12. Required Flow Rate :					
A. From Design (Line 12 of Pressure, Line 10 of Non-Level or Line 6 of Pum	p*): GPM				
B. Or calculated: GPM = Change in Depth (in) x Gallons Per Inch / Time Inte	erval in Minutes ** Note: This value must				
in X gal/in÷	min = GPM installation based on				
13. Flow Rate from Line 12.A or 12.B above.	GPM				
14. Calculate TIMER ON setting:					
Total Dosing Volume/GPM					
gal ÷ gpm =	Minutes ON				
15. Calculate TIMER OFF setting:					
Minutes Per Day (1440)/Doses Per Day - Minutes On					
1440 min ÷ doses/day -	min = Minutes OFF				
16. Pump Off Float - Measuring from bottom of tank:					
Distance to set Pump Off Float=Gallons to Cover Pump / Gallons Per Ind	:h:				
gal ÷	gal/in = Inches				
17. Alarm Float - Measuring from bottom of tank:					
Distance to set Alarm Float = Tank Depth(4A) X 90% of Tank Depth					
in X 0.90 =	in				
B. DEMAND DOSE FLOAT SETTINGS					
18. Calculate Float Separation Distance using Dosing Volume .					
Total Dosing Volume / Gallons Per Inch					
83 gal ÷ 11.7 gal/in =	7.1 Inches				
19. Measuring from bottom of tank:					
A. Distance to set Pump Off Float = Pump + block height + 2 inches					
12 in + 3 in =	15 Inches				
B. Distance to set Pump On Float=Distance to Set Pump-Off Float + Float S	eparation Distance				
15 in + 7.1 in =	22 Inches				
C. Distance to set Alarm Float = Distance to set Pump-On Float + Alarm D	epth (2-3 inches)				
22 in + 3.0 in =	25 Inches				
FLOAT SETTINGS					
DEMAND DOSING	TIMED DOSING				
Inches for Dose: 7.1 in					
Alarm Depth 25.1 in	Alarm Depth in				
Pump On 22.1 in 35.16 Gal					
Pump Off 15.0 in 83 Gal	Pump Off in				
176 Gal					

Soil Profile Description

Date C	ompleted :		10/21/2019		Observation # :	Soil Borings 1 - 3		3
Com	pleted By :	: Traci Beckstrom/Melissa Besser Equipment		Equipment :		Hand Auger		
Client	t / Project :		Joel Schilling		Limiting Layer :		13"	
Landscape	position :		Side slope/Toe		Vegitation :		Grass	
Mapped	soil type :		186		Weather :		Cloudy	
Observatio	on # : 1	Pri	mary Site					
Horizon Depth	Soil T	exture	Matrix Color	Redo	ox features	Shape	Grade	Consistence
0" - 8"	Loam	y Sand	10YR 2/1			Granular	Strong	Friable
8" - 13"	Fine	Sand	10YR 3/4			Single Grain	Structureless	Loose
13" - 16"	Fine	Sand	10YR3/4	Redox a	t 13" 10YR 4/6	Single Grain	Structureless	Loose
Observatio	on # : 2	Pri	mary Site					
Horizon Depth	Soil T	exture	Matrix Color	Redo	ox features	Shape	Grade	Consistence
0" - 9"	Loam	y Sand	10YR 2/1			Granular	Strong	Friable
9" - 12"	Fine	Sand	10YR 3/4			Single Grain	Structureless	Loose
12" - 18"	Fine	Sand	10YR3/4	Redox a	t 12" 10YR 4/6	Single Grain	Structureless	Loose
Observatio	on # : 3	Pri	mary Site					
Horizon Depth	Soil T	exture	Matrix Color	Redo	ox features	Shape	Grade	Consistence
0" - 8"	Loam	y Sand	10YR 2/1			Granular	Strong	Friable
8" - 13"	Fine	Sand	10YR 3/4			Single Grain	Structureless	Loose
13" - 16"	Fine	Sand	10YR3/4	Redox a	t 13" 10YR 4/6	Single Grain	Structureless	Loose

6074 Keystone RdMilaca, MN56353Phone: (320)-983-2447Fax: (320)-983-2151info@septiccheck.comwww.SepticCheck.com

National Cooperative Soil Survey

USDA

Natural Resources **Conservation Service**

MAP I	EGEND	MAP INFORMATION
Area of Interest (AOI) Area of Interest (AOI)	Spoil Area	The soil surveys that comprise your AOI were mapped at 1:20,000.
Soils Soil Map Unit Polygons	Very Stony Spot	Warning: Soil Map may not be valid at this scale.
Soil Map Unit Lines	Wet Spot	Enlargement of maps beyond the scale of mapping can cal misunderstanding of the detail of mapping and accuracy of
Soil Map Unit Points	Special Line Features	contrasting soils that could have been shown at a more def
Blowout	Water Features	
Borrow Pit	Streams and Canals	Please rely on the bar scale on each map sheet for map measurements.
Clay Spot	H Rails	Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
Closed Depression	Minterstate Highways	Coordinate System: Web Mercator (EPSG:3857)
Gravel Pit Gravelly Spot	US Routes	Maps from the Web Soil Survey are based on the Web Mei projection, which preserves direction and shape but distort
🚯 Landfill	Local Roads	distance and area. A projection that preserves area, such a Albers equal-area conic projection, should be used if more
Lava Flow	Background	
Marsh or swamp	Aerial Photography	This product is generated from the USDA-NRCS certified d of the version date(s) listed below.
Miscellaneous Water		Soil Survey Area: Aitkin County, Minnesota Survey Area Data: Version 20, Sep 16, 2019
Perennial Water Back Outcome		Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.
Saline Spot		Date(s) aerial images were photographed: Jul 24, 2016–
Sandy Spot		
 Severely Eroded Spot 		I ne orthophoto or other base map on which the soil lines w compiled and digitized probably differs from the backgroun imagent displayed on these maps. As a result some minor
Sinkhole		shifting of map unit boundaries may be evident.
Slide or Slip		. . <i>. .</i>
Sodic Spot		

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
186	Nemadji loamy fine sand	2.9	58.9%
202	Meehan loamy sand	1.6	33.1%
C4A	Cebana-Giese, frequently ponded-Ronneby complex, 0 to 3 percent slopes, stony	0.0	0.5%
С9В	Mora-Ronneby complex, 1 to 4 percent slopes, stony	0.0	0.5%
W	Water	0.3	6.9%
Totals for Area of Interest	•	4.9	100.0%

Map Unit Legend

Aitkin County, Minnesota

186—Nemadji loamy fine sand

Map Unit Setting

National map unit symbol: gjfh Elevation: 980 to 1,640 feet Mean annual precipitation: 25 to 30 inches Mean annual air temperature: 39 to 45 degrees F Frost-free period: 120 to 140 days Farmland classification: Not prime farmland

Map Unit Composition

Nemadji and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Nemadji

Setting

Landform: Flats on outwash plains Down-slope shape: Linear Across-slope shape: Concave Parent material: Sandy outwash

Typical profile

Ap - 0 to 6 inches: loamy fine sand *E,Bw,Bhs - 6 to 34 inches:* fine sand *C1,C2 - 34 to 60 inches:* fine sand

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Somewhat poorly drained
Capacity of the most limiting layer to transmit water (Ksat): High to very high (6.00 to 20.00 in/hr)
Depth to water table: About 18 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Low (about 4.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3w Hydrologic Soil Group: A/D Forage suitability group: Sloping Upland, Low AWC, Acid (G090AN008MN) Hydric soil rating: No

USDA

Minor Components

Newson and similar soils

Percent of map unit: 5 percent Landform: Swales Hydric soil rating: Yes

Omega and similar soils Percent of map unit: 5 percent Hydric soil rating: No

Leafriver and similar soils Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Data Source Information

Soil Survey Area: Aitkin County, Minnesota Survey Area Data: Version 20, Sep 16, 2019

TECHNICAL BROCHURE

BPE R1

FEATURES

Corrosion resistant construction

Cast iron body

Thermoplastic impeller and cover.

Upper sleeve and lower heavy duty ball bearing construction.

Motor is permanently lubricated for extended service life.

Powered for continuous operation.

All ratings are within the working limits of the motor.

Quick disconnect power cord, 20' standard length, heavy duty 16/3 SJTW with 115 or 230 volt grounding plug.

Complete unit is heavy duty, portable and compact.

Mechanical seal is carbon, ceramic, BUNA and stainless steel.

Stainless steel fasteners

Wastewater

Goulds Water Technology

APPLICATIONS

Specially designed for the following uses:

- Mound Systems
- Effluent/Dosing Systems
- Low Pressure Pipe Systems
- Basement Draining
- Heavy Duty Sump/Dewatering

SPECIFICATIONS

Pump - General:

- Discharge: 1½" NPT
- Temperature: 104°F (40°C) maximum, continuous when fully submerged.
- Solids handling: ½" maximum sphere.
- Automatic models include a float switch.
- Manual models available.
- Pumping range: see performance chart or curve.

PE31 Pump:

- Maximum capacity: 53 GPM
- Maximum head: 25' TDH

PE41 Pump:

- Maximum capacity: 61 GPM
- Maximum head: 29' TDH

PE51 Pump:

- Maximum capacity: 70 GPM
- Maximum head: 37' TDH

PUMP INFORMATION

MOTOR

General:

- Single phase
- 60 Hertz
- 115 and 230 volts
- Built-in thermal overload protection with automatic reset.
- Class B insulation
- Oil-filled design
- High strength carbon steel shaft

PE31 Motor:

- .33 HP, 3000 RPM
- 115 volts
- Shaded pole design

PE41 Motor:

- .40 HP, 3400 RPM
- 115 and 230 volts
- PSC design

PE51 Motor:

- .50 HP, 3400 RPM
- 115 and 230 volts
- PSC design

AGENCY LISTINGS

Tested to UL 778 and CSA 22.2 108 Standards By Canadian Standards Association File #LR38549

Order No.	HP	Volts	Amps	Minimum Circuit Breaker	Phase	Float Switch Style	Cord Length	Discharge Connection	Minimum Basin Diameter	Maximum Solids Size	Shipping Weight Ibs/kg
PE31M	0.22		12	20		Manual / No Switch					
PE31P1	0.33	115		20		Piggyback Float Switch					
PE41M		1 115	7 5	1 5		Manual / No Switch					
PE41P1			7.5	15		Piggyback Float Switch					
PE42M	0.4	220	27	10		Manual / No Switch	201	1 5 1	10"	E.1	21/1/1
PE42P1		230	3.7	10		Piggyback Float Switch	20	1.5	10	.5	31/14.1
PE51M		115	0.5	20]	Manual / No Switch					
PE51P1		115	9.5	20		Piggyback Float Switch					
PE52M	0.5	220	47	10	1	Manual / No Switch	1				
PE52P1		230	4./			Piggyback Float Switch]				

Goulds Water Technology

PERFORMANCE RATINGS

PE31

Total Head (feet of water)	GPM
5	52
10	42
15	29
20	16
25	0

PE41

Total Head (feet of water)	GPM
8	61
10	57
15	46
20	33
25	16

PE51

Total Head (feet of water)	GPM
10	67
15	59
20	50
25	39
30	26
35	8

DIMENSIONS

(All dimensions are in inches. Do not use for construction purposes.)

Xylem Inc. 2881 East Bayard Street Ext., Suite A Seneca Falls, NY 13148 Phone: (866) 325-4210 Fax: (888) 322-5877 www.gouldswatertechnology.com

Goulds is a registered trademark of Goulds Pumps, Inc. and is used under license. @ 2016 Xylem Inc. BPE R1 $\,$ September 2016 $\,$

PS PATROL[®] SUSTER Outdoor Pedestal High Water Alarm System

The newly enhanced PS Patrol[®] system features all the same functions you have come to expect, plus so much more over other traditional pedestal-style alarms.

The PS Patrol[®] features a **built-in high water alarm** and provides a convenient location to connect all wiring required for a pumping station application. It employs a **receptacle** for easy connection of a 120V pump and piggy-back pump switch.

The sleek, angled design of the clear enclosure includes a **removable cover** for easy access for field wiring and viewing components. All internal components are sealed within the cover for protection from the elements. The **red LEDs illuminate the top of the cover** in an alarm condition for easy 360° visual identification. Available with or without 32" mounting post.

FEATURES

- Enclosure meets Type 3R water-tight standards
- Innovative design allows alarm to accept a 5" square plastic post or 4" pipe/conduit for mounting
- Automatic alarm reset and green power on indicator
- Flush mount horn silence/alarm test switch
- Auxiliary alarm contacts included for easy attachment of remote devices
- Includes cord seal for sealing switch and pump cables
- Electrical potting cavity to provide easy, reliable method to seal power cables (*electrical duct seal not included*)
- Options include various switch cord lengths, riser assembly adapter, dual alarm, and elapsed time meter

PART NO. DESCRIPTION

- 1022728 PSP2 120V, no pump switch, with post
- 1019021 PSP2 120V, no pump switch, 20A breaker, with post
- **1022575** PSP2 120V, ETM, with post
- **1022577** PSP2 120V, DUO alarm, ETM, with post
- 1018434 PSP2 120V, TAAB indoor alarm, with post
- **1011551** Assembly Kit (riser extension coupling and washers)

9500020C_08/18 © 2018 SJE, Inc. All Rights Reserved. SJE RHOMBUS is a trademark of SJE, I<u>nc.</u>

www.sjerhombus.com

Toll Free 888-342-5753 Phone 218-847-1317

U.S Patent No. 9472,932 and D780,703

f C 🛗 in

PS PATROL® System

Provides convenient wiring connection and system monitoring for pump station applications.

The PS Patrol[®] system features a built-in high water alarm and provides a convenient location to connect all wiring required for a pumping station installation. The PS Patrol[®] system employs a receptacle to accept a 120 VAC pump and piggy-back style pump switch.

The sleek, angled design of the clear enclosure includes a **removable cover** for easy access for field wiring. All internal components are sealed within the cover for protection from the elements. The **red LED illuminates the cover** in an alarm condition for easy 360° visual identification. Available with or without 32″ mounting post.

STANDARD FEATURES

- Controller meets Type 3R watertight standards and is designed for outdoor use
- Built-in high water alarm
- · Removable cover provides greater access for field wiring and service
- Controller can be purchased with standard 5" square plastic post or can be mounted on 4" schedule 40/80 PVC pipe or conduit (customer supplied)
- Automatic alarm reset, horn silence and alarm test
- 360° visual alarm; audible alarm
- Red LED illuminates cover in alarm condition
- Green Power On light
- Auxiliary alarm contacts included for easy attachment of remote alarm
- Receptacle for easy connection of pump and piggy-back pump switch
- · Cord seal included for sealing switches and pump cable
- Electrical potting cavity provides easy reliable method to seal power cables. (User to provide duct seal)
- CSA Certified
- Five-year limited warranty

OPTIONS

- Mercury or mechanical pump switches
- Various cord lengths
- Riser assembly adapter
- Dual alarm (2nd alarm input Yellow LED illuminates cover in alarm condition)
- Elapsed Time Meter (ETM)
- Pump circuit breaker
- Available with or without 32" post

Shown with Mounting Post U.S. Patent Nos. D 780,703 and 9,472,932

SPECIFICATIONS

ALARM VOLTAGE: 120 VAC

PUMP VOLTAGE: 120 VAC

ENCLOSURE SIZE:

Controller with post 5" X 5" X 39" Controller without post 5" X 5" x 8"

RECEPTACLE: 120 VAC - NEMA Type 5-15

AUXILIARY CONTACTS 120 VAC 0.5 amps max., 50/60 Hz (circuit not supervised)

ALARM HORN: 82 decibels at 10 feet

ALARM FLOAT: SJE SignalMaster[®] control switch with mounting clamp

1-888-DIAL-SJE • 1-218-847-1317 1-218-847-4617 Fax email: customer.service@sjeinc.com

SEE REVERSE SIDE FOR ORDERING INFORMATION.

PSP2 120V	
MODEL PSP2	\$328.00
MODEL 120V	Base
STARTING DEVICE 1 = SJE PumpMaster® pump switch (0-13 FLA) ● 2 = SJE PumpMaster® Plus pump switch (0-15 FLA) ● 3 = 120 VAC Double Float® pump switch (0-15 FLA) ▲ 5 = Super Single® pump switch (120V = 0-15 FLA) ▲ 6 = No pump switch	\$49.00 \$65.00 \$111.00 \$87.00 Base •
FLOAT SWITCH APPLICATION H = pump down (select 17 option) X = no floats	Base \$27.00
OPTIONS Listed below	Total Options TOTAL LIST PRICE
CODE DESCRIPTION LIST PRICE 1J Duo alarm inputs \$74.00 1V Vertical Reed Switch (must select 1J) \$69.00 8A Elapsed time meter \$80.00 10X No Mounting Post. -\$32.00 15_P Pump breaker \$64.00	CODE DESCRIPTION LIST PRICE 16A 10' cord in lieu of 20' (per float) -\$3.00 (Does not apply for Double Float* or Double Float* Master pump switch) 16B 15' cord in lieu of 20' (per float) 16C 30' cord in lieu of 20' (per float) \$5.00 16D 40' cord in lieu of 20' (per float) \$7.00

specify 0 or 1 after number 15 followed by letter "P"

0 = 15 amp breaker (0-7 FLA) 1 = 20 amp breaker (7-15 FLA)

(Ex. 151P = 20 amp breaker, 7-15 FLA)

• Mechanically-activated ▲ Mercury-activated

17J Sensor Float[®] / pipe clamp (*alarm float*) ▲\$4.00

22F PSP Assembly Kit\$58.00

Part Number	Model Number	Description	FLA	List Price	Ship Weight
1022728	PSP2120V6H17A	PSP2 120V, no pump switch, 20' SJE SignalMaster*, with mounting post	0-15	\$325.00	13 lbs.
1019021	PSP2120V6H151P17J	PSP2 120V, no pump switch, 20' Sensor Float", 20A circuit breaker, with mounting post	7-15	\$396.00	13 lbs.
1022575	PSP2120V6H8A17A	PSP2 120V, ETM, 20' SJE SignalMaster*, with mounting post	0-15	\$405.00	14 lbs.
1022577	PSP2120V6H1JV8A17A	PSP2 120V, Duo alarm, ETM, 20' SJE SignalMaster* & VRS, with mounting post	0-15	\$548.00	15 lbs.
1018434	PSP2AB6H16B17A	PSP2 120V, no alarm, no pump switch; remote TAAB, 15' SJE SignalMaster [*] , with mounting post	0-15	\$297.00	16 lbs.
1011551	Assembly Kit	Riser Extension Coupling and Washers	n/a	\$66.00	10 lbs.

Call or fax your order! 1-888-DIAL-SJE (1-888-342-5753) • Fax 218-847-4617

customer.service@sjeinc.com

PS Patrol[®] System with 120V Alarm Installation Instructions

Use only as a guide. Pumping ranges are based on testing in non-turbulent conditions. Range may vary due to water temperature and cord shape.

Note: As the tether length increases, so does the variance of the pumping range.

Installation Instructions

Figure 4

Run cables through optional riser mounting kit and post.

Punch out power cable knock outs as shown. **Note:** Only remove knock outs for number of cables used.

Holding base, run cables through cord seal holes.

Mount PS Patrol[®] to post. **Note:** PS Patrol[®] can be mounted to optional square plastic post as shown in **Figure 7** or 4 inch conduit / PVC Pipe (customer supplied) as shown in **Figure 8**. Use #8 x 1" screws only.

Figure 5

Installation Instructions

Figure 10

Figure 9

Connect alarm power, pump power and alarm float switch as shown.

ng D

Use electrical duct seal to fill around incoming power cords. Ensure pocket is filled completely and the gaps filled around each cable.

WARNING: Failure to do so will allow sewer gases to enter control panel causing corrosion and failure of electrical components.

Figure 12

If ETM is used, snap into location as shown. Arrange cords as shown. Receptacle is inserted into pocket. Push excess cord back through cord seal. Install PVC dowels into unused holes of cord seal.

Plug pump switch piggy-back plug into PSP cord receptacle. If using optional ETM, plug this into back of pump switch piggy-back plug. Plug pump in last.

WARNING: Failure to have the plugs in order described as shown will effect proper operation of system.

Figure 13

Firmly tighten cord seal nut so that cables do not move and cord seal is held in place.

Figure 14

Install cover on base and screw into place.

Figure 11

Installation Instructions

WARNING!

ELECTRICAL SHOCK HAZARD Disconnect all power sources before servicing. Failure to do so could result in serious injury or death.

Figure 15

Turn on power and test alarm by pressing the test silence switch. Horn will sound and alarm light will illuminate.

Figure 16

Perform final testing on system by lifting pump and alarm float. When pump float is lifted, the pump will turn on. When alarm float is lifted, the alarm horn will sound and alarm light will illuminate.

SJE-Rhombus[®] Five-Year Limited Warranty

SJE-RHOMBUS[®] warrants to the original consumer that this product shall be free of manufacturing defects for five years after the date of consumer purchase. During that time period and subject to the conditions set forth below, **SJE-RHOMBUS**[®] will repair or replace, for the original consumer, any component which proves to be defective due to defective materials or workmanship of **SJE-RHOMBUS**[®].

ELECTRICAL WIRING AND SERVICING OF THIS PRODUCT MUST BE PERFORMED BY A LICENSED ELECTRICIAN.

THIS WARRANTY DOES NOT APPLY: (A) to damage due to lightning or conditions beyond the control of SJE-RHOMBUS[®]; (B) to defects or malfunctions resulting from failure to properly install, operate or maintain the unit in accordance with printed instructions provided; (C) to failures resulting from abuse, misuse, accident, or negligence; (D) to units which are not installed in accordance with applicable local codes, ordinances, or accepted trade practices, and (E) to units repaired and/or modified without prior authorization from SJE-RHOMBUS[®]. Some states do not allow limitations on how long an implied warranty lasts, so the above limitation may not apply to you. Some states do not allow the exclusion or limitation of incidental or consequential damages, so the above limitation or exclusion may not apply to you. This warranty gives you specific legal rights, and you may also have other rights which vary from state to state.

TO OBTAIN WARRANTY SERVICE: The consumer shall assume all responsibility and expense for removal, reinstallation, and freight. Any item to be repaired or replaced under this warranty must be returned to **SJE-RHOMBUS**[®], or such place as designated by **SJE-RHOMBUS**[®].

ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS ARE LIMITED TO THE DURATION OF THIS WRITTEN WARRANTY. SJE-RHOMBUS® SHALL NOT, IN ANY MANNER, BE LIABLE FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES AS A RESULT OF A BREACH OF THIS WRITTEN WARRANTY OR ANY IMPLIED WARRANTY.

Septic System Management Plan for Above Grade Systems

The goal of a septic system is to protect human health and the environment by properly treating wastewater before returning it to the environment. Your septic system is designed to kill harmful organisms and remove pollutants before the water is recycled back into our lakes, streams and groundwater.

This **management plan** will identify the operation and maintenance activities necessary to ensure longterm performance of your septic system. Some of these activities must be performed by you, the homeowner. Other tasks must be performed by a licensed septic maintainer or service provider. However, it is **<u>YOUR</u>** responsibility to make sure all tasks get accomplished in a timely manner.

The University of Minnesota's *Septic System Owner's Guide* contains additional tips and recommendations designed to extend the effective life of your system and save you money over time.

Proper septic system design, installation, operation and maintenance means safe and clean water!

Property Owner	Email
Property Address	Property ID
System Designer	Contact Info
System Installer	Contact Info
Service Provider/Maintainer	Contact Info
Permitting Authority	Contact Info
Permit #	Date Inspected
	Dute inspected

Keep this Management Plan with your Septic System Owner's Guide. The Septic System Owner's Guide includes a folder to hold maintenance records including pumping, inspection and evaluation reports. Ask your septic professional to also:

- Attach permit information, designer drawings and as-built of your system, if they are available.
- Keep copies of all pumping records and other maintenance and repair invoices with this document.
- Review this document with your maintenance professional at each visit; discuss any changes in product use, activities, or water-use appliances.

For a copy of the *Septic System Owner's Guide*, visit <u>www.bookstores.umn.edu</u> and search for the word "septic" or call 800-322-8642.

For more information see http://septic.umn.edu

Version: August 2015

Septic System Management Plan for Above Grade Systems

Septic System Specifics							
System Type:	Ι	Π	III	IV*	V*	□ System is subject to operating permit*	
(Based on MN Rules Chapter 7080.2200 – 2400)					System uses UV disinfection unit*		
*Additional Management Plan required			d	Type of advanced treatment unit			

Dwelling Type	Well Construction						
Number of bedrooms:	Well depth (ft):						
System capacity/ design flow (gpd):	□ Cased well Casing depth:						
Anticipated average daily flow (gpd):	□ Other (specify):						
Comments	Distance from septic (ft):						
Business?: Y N What type?	Is the well on the design drawing? Y N						

Septic Tank							
First tank Tank volume: gallons		Pump Tank gallons					
Does tank have two compartments? Y N		Effluent Pump make/model:					
Second tank Tank volume: gallons		Pump capacity GPM					
Tank is constructed of		TDH Feet of head					
Effluent screen: Y N Alarm Y N		Alarm location					

Soil Treatment Area (STA)							
Mound/At-Grade area (width x length): ft Rock bed size (width x length): ft Location of additional STA: ft Type of distribution media:	 Inspection ports Cleanouts Surface water diversions Additional STA not available 						

Septic System Management Plan for Above Grade Systems

Homeowner Management Tasks

These operation and maintenance activities are your responsibility. Chart on page 6 can help track your activities.

Your toilet is not a garbage can. Do not flush anything besides human waste and toilet paper. No wet wipes, cigarette butts, disposal diapers, used medicine, feminine products or other trash!

The system and septic tanks needs to be checked every _____ months

Your service provider or pumper/maintainer should evaluate if your tank needs to be pumped more or less often.

Seasonally or several times per year

- Leaks. Check (listen, look) for leaks in toilets and dripping faucets. Repair leaks promptly.
- *Soil treatment area.* Regularly check for wet or spongy soil around your soil treatment area. If surfaced sewage or strong odors are not corrected by pumping the tank or fixing broken caps and leaks, call your service professional. *Untreated sewage may make humans and animals sick.* Keep bikes, snowmobiles and other traffic off and control borrowing animals.
- *Alarms*. Alarms signal when there is a problem; contact your service professional any time the alarm signals.
- *Lint filter*. If you have a lint filter, check for lint buildup and clean when necessary. If you do not have one, consider adding one after washing machine.
- *Effluent screen.* If you do not have one, consider having one installed the next time the tank is cleaned along with an alarm.

Annually

- *Water usage rate.* A water meter or another device can be used to monitor your average daily water use. Compare your water usage rate to the design flow of your system (listed on the next page). Contact your septic professional if your average daily flow over the course of a month exceeds 70% of the design flow for your system.
- *Caps*. Make sure that all caps and lids are intact and in place. Inspect for damaged caps at least every fall. Fix or replace damaged caps before winter to help prevent freezing issues.
- *Water conditioning devices.* See Page 5 for a list of devices. When possible, program the recharge frequency based on *water demand (gallons)* rather than *time (days)*. Recharging too frequently may negatively impact your septic system. Consider updating to demand operation if your system currently uses time,
- *Review your water usage rate.* Review the Water Use Appliance chart on Page 5. Discuss any major changes with your service provider or pumper/maintainer.

During each visit by a service provider or pumper/maintainer

- Make sure that your service professional services the tank through the manhole. (NOT though a 4" or 6" diameter inspection port.)
- Ask how full your tank was with sludge and scum to determine if your service interval is appropriate.
- Ask your pumper/maintainer to accomplish the tasks listed on the Professional Tasks on Page 4.

Septic System Management Plan for Above Grade Systems

Professional Management Tasks

These are the operation and maintenance activities that a pumper/maintainer performs to help ensure longterm performance of your system. At each visit a written report/record must be provided to homeowner.

Plumbing/Source of Wastewater

- Review the Water Use Appliance Chart on Page 5 with homeowner. Discuss any changes in water use and the impact those changes may have on the septic system.
- Review water usage rates (if available) with homeowner.

Septic Tank/Pump Tanks

- *Manhole lid.* A riser is recommended if the lid is not accessible from the ground surface. Insulate the riser cover for frost protection.
- *Liquid level*. Check to make sure the tank is not leaking. The liquid level should be level with the bottom of the outlet pipe. (If the water level is below the bottom of the outlet pipe, the tank may not be watertight. If the water level is higher than the bottom of the outlet pipe of the tank, the effluent screen may need cleaning, or there may be ponding in the soil treatment area.)
- Inspection pipes. Replace damaged or missing pipes and caps.
- *Baffles*. Check to make sure they are in place and attached, and that inlet/outlet baffles are clear of buildup or obstructions.
- *Effluent screen.* Check to make sure it is in place; clean per manufacturer recommendation. Recommend retrofitted installation if one is not present.
- *Alarm*. Verify that the alarm works.
- *Scum and sludge*. Measure scum and sludge in each compartment of each septic and pump tank, pump if needed.

Pump

- *Pump and controls.* Check to make sure the pump and controls are operating correctly.
- *Pump vault.* Check to make sure it is in place; clean per manufacturer recommendations.
- *Alarm*. Verify that the alarm works.
- Drainback. Check to make sure it is draining properly.
- Event counter or elapsed time meter. Check to see if there is an event counter or elapsed time meter for the pump. If there is one or both, calculate the water usage rate and compare to the anticipated use listed on Design and Page 2. Dose Volume: _____ gallons: Pump run time: _____ Minutes

Soil Treatment Area

- *Inspection pipes*. Check to make sure they are properly capped. Replace caps and pipes that are damaged.
- Surfacing of effluent. Check for surfacing effluent or other signs of problems.
- *Lateral flushing*. Check lateral distribution; if cleanouts exist, flush and clean at recommended frequency.
- *Vegetation* Check to see that a good growth of vegetation is covering the system.

All other components – evaluate as listed here:

Septic System Management Plan for Above Grade Systems

Water-Use Appliances and Equipment in the Home

Appliance	Impacts on System	Management Tips						
Garbage disposal	 Uses additional water. Adds solids to the tank. Finely-ground solids may not settle. Unsettled solids can exit the tank and enter the soil treatment area. 	 Use of a garbage disposal is not recommended. Minimize garbage disposal use. Compost instead. To prevent solids from exiting the tank, have your tank pumped more frequently. Add an effluent screen to your tank. 						
Washing machine	 Washing several loads on one day uses a lot of water and may overload your system. Overloading your system may prevent solids from settling out in the tank. Unsettled solids can exit the tank and enter the soil treatment area. 	 Choose a front-loader or water-saving top-loader, these units use less water than older models. Limit the addition of extra solids to your tank by using liquid or easily biodegradable detergents. Limit use of bleach-based detergents and fabric softeners. Install a lint filter after the washer and an effluent screen to your tank Wash only full loads and think even – spread your laundry loads throughout the week. 						
Dishwasher	 Powdered and/or high-phosphorus detergents can negatively impact the performance of your tank and soil treatment area. New models promote "no scraping". They have a garbage disposal inside. 	 Use gel detergents. Powdered detergents may add solids to the tank. Use detergents that are low or no-phosphorus. Wash only full loads. Scrape your dishes anyways to keep undigested solids out of your septic system. 						
Grinder pump (in home)	• Finely-ground solids may not settle. Unsettled solids can exit the tank and enter the soil treatment area.	 Expand septic tank capacity by a factor of 1.5. Include pump monitoring in your maintenance schedule to ensure that it is working properly. Add an effluent screen. 						
Large bathtub (whirlpool)	 Large volume of water may overload your system. Heavy use of bath oils and soaps can impact biological activity in your tank and soil treatment area. 	 Avoid using other water-use appliances at the same time. For example, don't wash clothes and take a bath at the same time. Use oils, soaps, and cleaners in the bath or shower sparingly. 						
Clean Water Uses	Impacts on System	Management Tips						
High-efficiency furnace	• Drip may result in frozen pipes during cold weather.	• Re-route water directly out of the house. Do not route furnace discharge to your septic system.						
Water softener Iron filter Reverse osmosis	Salt in recharge water may affect system performance.Recharge water may hydraulically overload the system.	 These sources produce water that is not sewage and should not go into your septic system. Reroute water from these sources to another outlet, such as a dry well, draintile or old drainfield. 						
Surface drainage Footing drains	• Water from these sources will overload the system and is prohibited from entering septic system.	 When replacing, consider using a demand-based recharge vs. a time-based recharge. Check valves to ensure proper operation; have unit serviced per manufacturer directions 						

Septic System Management Plan for Above Grade Systems

Homeowner Maintenance Log

Track maintenance activities here for casy reference. See list of management tasks on pages 3 and 4.

Activity		Date accomplished								
Check frequently:										
Leaks: check for plumbing leaks*		<u> </u>								
Soil treatment area check for surfacing**										
Lint filter: check, clean if needed*										
Effluent screen (if owner-maintained)***										
Alarm**			the first of adjustment	1						
Check annually:										
Water usage rate (maximum gpd)										
Caps: inspect, replace if needed						•				
Water use appliances – review use										
Other:	~~~~									

*Monthly

**Quarterly

***Bi-Annually

Notes: If flow exceeds system capacity, check for and repair any leaks into the system, including household plumbing fixtures. If system ponds or otherwise cannot handle flow, repair options include; add time dosing, adding pre-treatment, or expanding the system.

"As the exact of this SATS, I understand it is ny responsibility to properly operato and maintain the serage treatment system on this property, utilizing the Nanagement Flan. If requirements in this Nanagement Flan are not met, I will promptly notify the permitting authority and take necessary corrective actions. If I have a new system, I agree to adequately protoct the reserve area for future use as a soil treatment system."

Property Owner Signature: Selle	ng Date 11 - 2019
Management Plan Prepared By: Melissa Besser	Certification 691
Permitting Authority: Aitkin County	

 2015 Regents of the University of Minnesota - All rights reserved - the University of Minnesota is an equal opportunity educator and employer this material is available in alternative formats upon request. Contact the Water Resources Center, 612-624-9282 - The Onsine Sewage Treament Program is delivered by the University of Minnesota Extension Service and the University of Minnesota Water Resources Center.