Septic Permit # 2016-0469 P# 42121 app-2016-000586 Aitkin, MN 56431

Aitkin County Planning & Zoning / Environmental Services

209 2nd Street NW, Room 100

Phone: 218-927-7342 Fax: 218-927-4372

Email: aitkinpz@co.aitkin.mn.us

Contact Information

Are you the Property Owner?

If we have questions on the application who should we contact? Name: David wm Lange Phone: (218) 380 - 6939 Email Address: langes@scicable.com Mailing Address: 505 ione av. 35798 678th street

Property Owner Contact

Property Owner Email Address:

bwelk@002.org

hill city MN 55748

Project Location Search

Property: Selected:

	Property Location				Property Address			Legal Description	Owner Information	Tax Payer Information
Parcel Number	Township or City Name	TWP	SEC	RGE	Property Address	Property City	Property Zip 5	Legal Description	Owner Name(s)	Taxpayer Name(s)
20-0-011801	MACVILLE TWP	51	8	26	62612 Osprey Ave	SWATARA	55785	N 1/2 OF NW-NW	WELK, BRENT J &	WELK, BRENT J &
									SHELLY L	SHELLY L

Driving north of Swatara on Osprey AV to adress about 3 miles

Directions to the project location.:

Designer/Installer

Designer Name:

David Lange

Installer:

Licensed Septic Professional

Installer Name:

David Lange

Installer License Number:

1174

System Information

Please attach a septic system design.:

File 1: 🖟 3361_001 pdf

Please select all that apply:

Residential Mound/At-Grade

Terms

General Terms Zoning Permits

Defining and staking the property lines, road right-of-ways, septic sites, and wells are the responsibility of the property owner. In some cases, a registered survey may be required to verify setbacks before granting a permit.

Land Use/Septic General Terms

Zoning permits and Subsurface Sewage Treatment System permits are valid for one (1) year (unless the sewage permit is to upgrade an Imminent Threat to Public Health or Safety system, which is then valid for ten (10) months).

All corners of the proposed structure(s) need to be staked with visible flags, ribbon, or lathes prior to onsite inspection by Aitkin County.

If property lines are not clearly marked and visible, then they need to be staked with visible flags, ribbon, or lathes prior to onsite inspection by Aitkin County.

It shall be a violation of the Aitkin County Zoning Ordinance to commence construction before the permit application is approved by Aitkin County.

The landowner or authorized agent may make application for a zoning permit agreeing to do such work in accordance with all Altkin County Ordinances. The landowner or authorized agent agrees that the application, site plan, and all other attachments submitted herewith are true and accurate and shall become a part of the permit. The landowner or authorized agent agrees that, in making application for a zoning permit, the landowner grants permission to Altkin County, at reasonable times, to enter the property to determine compliance of the application with applicable Local, County or State Ordinances or Statutes. It is the applicants sole responsibility to contact other Local, County or State agencies to ensure the applicant has complied with all relevant Local, County or State Ordinances or Statutes.

After a complete application is submitted and reviewed, an on-site inspection may be conducted; a permit may be issued describing the proposed construction that may take place on the property. Changes to a project may require a permit application to be resubmitted.

The septic installer shall notify Aitkin County Environmental Services a minimum of twenty-four (24) hours before the covering of any portion of the septic installation. Changes from the approved septic design will require approval by the County prior to construction.

Applicants are responsible for getting all applicable entrance permits from the appropriate road authority.

Applicants acknowledge that they are in compliance with MN Contractor Licensing laws per MN Statute 326B.85.

Invoice 07/06/2016

Charge	Cost	Quantity	Total
Residential Mound/At-Grade added 07/06/2016 2:44 PM	\$300.00	x 1	\$300.00
\$300 Flat Fee			

Grand Total

Total (Paid) \$300.00	ונ	ı
-----------------------	----	---

- Results (Go to top)
- Signature accepted
- Status Changed
- Change logged with reason
- Sent external status notification to: langes@scicable.com;bwelk@002.org

Approvals

Approval	Signature
Applicant	Dave Lange - 07/06/2016 2:48 PM - witnessed by Kalea Suihkonen e2ad38c83619c0ae5b59la63dc460cf7 557d7c37621a82e3de896839dffc458f
#1 Adminstrative Approval Group	Kalea Suihkonen - 07/08/2016 2:50 PM c8ea388324c41679f728796411a45c3f 40004ca394ca82cc83882e76c1ead7fe
#2 Inspector Group	Kalea Suihkonen - 07/08/2016 2:50 PM f 3d8ce19b01bcd01335ecc8f3f4aeb8f 1af05902819f86c918d92c0923f18894
#3 Final Approval	Kalea Suihkonen - 07/06/2016 2:51 PM 769ba6f2453405cbb5a2e37b806dc9b7 1d1e2d3d89c36efa9d06c9091322975b

Admin Checklist

This application has been started by:	Kalea Suihkonen	٧
Zoning District of project location:	Farm Residential ▼	
Required OWHL setback distance:	▼	
"Other" OHWL setback distance is:		
Pumping Agreement Attached?	▼	
Low Interest Loan or SSTS Grant	No ▼	
project?		
Is this an After-The-Fact application?	Yes ▼	

DESIGN REVIEW CHECKLIST

Zoning Inspector:	Becky Sovde	•	
SSTS Type:	Type I	•	
SSTS Design:	Mound		▼.
New or Replacement SSTS:	Replacement	SSTS ▼	
# of bedrooms:	3		
gpd:	1-2,499 gpd	▼	
Does this system require an Operating Permit?			
Operating Permit #:			
Attach appropriate inspection forms.:	F		
Does this system belong to an other establishment?			
Is this a Cluster System?	No ▼		

Public I	Votes		
Text:	permit 42121 issued for a mour	nd replacement (3 bedroom)	
File(s):	File 1: 3362_001.pdf 3362_001.pdf		/
Numbe	rs		
	Current Number	Next from Sequence	
UID	#1383	not applicable	
Арр.	# App-2016-000586	App-2016-000587	
Permit	#	2016-0469	

FIELD EVALUATION SHEET

PRELIMINARY EVALUATION DATE 7/5/16, FIELD EVALUATION DATE 7/6/16 PROPERTY OWNER: Brent + Shelly Welk PHONE 218-380-6939 ADDRESS: 62612 OSPREY AU CITY, STATE, ZIP: Swedure Minn 557815						
LEGAL DESCRIPTION:						
PIN# 20-0-01/801 SEC 8 TS1 R 26 TWP NAME Macuille FIRE# 62612 LAKE/RIVER LAKE CLASS — OHWL FT.						
DESCRIPTION OF SOIL TREATMENT AREAS AREA #1 AREA #2 REFERENCE BM ELEVFT DISTURBED AREAS YES NO YES NO REFERENCE BM DESCRIPTION_ COMPACTED AREAS YES NO YES NO REFERENCE BM DESCRIPTION_ FLOODING YES NO YES NO REFERENCE BM DESCRIPTION_ F						
DEPTH TO STANDING WATER OR MOTTLED SOIL: BORING# 1 18", 1A 26", 2 ,2A						
BOTTOM ELEVATIONFIRST TRENCH OR BOTTOM OF ROCK BED: #1FT., #2FT.						
SOIL SIZING FACTOR: SITE #1, SITE #2						
CONSTRUCTION RELATED ISSUES: At this Time, going to use existing Sept and						
Add New lift, pumper to varity O						
SITE EVALUATOR NAME: DAVID LANGE TELEPHONE# 218-380-6939						
UG REVIEWDATE						
Comments:						
A Constant						
SOIL BORING TO GO ON REVERSE SIDE ONSITE INSPECTION NO ONSITE INSPECTION SIGN ON THE PROPERTY OF THE PROPE						
DATE						

SOILS CHARTS FOR BOTH PROPOSED AND ALTERNATE SITES

1 (PROPOSED) SOILS DATA

DEPTH	LEXIURE I	NUNSELL	
(INCHES)		COLOR	S. 1.
0-8"	Loam	10 4R 3	41
9-13"	Silty Loan	MAT 8	5/4
14-18'	Loany San	1079	5/3
19	sitty Loom deplation	1078	6/4
	deplatio	M 1048	18
			*
\$1	121		8
	= #		× 1,5
			8.8

2 (PROPOSED) SOILS DATA

DEPTH (INCHES)):	TEXTURE MUNSELL COLOR
0-6"	Sity Laur 10/1 2/1
7-14	5:1+ 104R 4/4
15-24	Medum 104R 4/6
26	104R 5/8

1 (ALTERNATE) SOILS DATA

DEPTH (INCHES)		OLOK
	× sales y up and	ુઉ
		38
		21 1
	*	
		J
		g d
		*
	8 ×	
	i de la companya de l	

2 (ALTERNATE) SOILS DATA

CLIENT: Brent Welk

DATE: 7/6/16

MAP DRAWN TO SCALE WITH A NORTH ARROW Ospany Aug 20-0-011801 94.87 10×38. Fitain_ barge. Ospry Extank 1000 gal Lift will use 1001 must be Deop Well

	FOLLOWING BEEN DRAWN ON THE MAP??
SHOW EXISTING OR PROPOSED	
WATER WELLS WITHIN 100 FT OF TREATMENT AREAS	
PRESSURE WATER LINES WITHIN 10 FT OF TREATMENT AREAS	INDICATE ELEVATIONS
☐ STRUCTURES ☐ LOT IMPROVEMENTS	INDICATE ELEVATIONS
☐ ALL SOIL TREATMENT AREAS ☐ ALL ISTS COMPONENTS	
HORIZONTAL AND VERTICAL REFERENCE	BENCHMARK TOP of Electro Bx
POINT OF SOIL BORINGS DIRECTION OF SLOPE	ELEVATION OF SEWER LINE @ HOUSE
☐ LOT EASEMENTS ☐ ALL LOT DIMENSIONS	
☐ DISTURBED/ COMPACTED AREAS	LIGHT ELEVATION @ TANK INLET 92.25
SITE PROTECTION-LATHE AND RIBBON EVERY 15 FT	ELEVATION @ BOTTOM OF ROCK LAYER 96
ACCESS ROUTE FOR TANK MAINTENANCE	ELEVATION @ BOTTOM OF BORING OR
REQUIRED SETBACKS	RESTRICTIVE LAYER 93
☐ STRUCTURES ☐ PROPERTY LINES	
OHWL	ELEVATION OF PUMP 90
COMMENTS:	ELEVATION OF DISTRIBUTION DEVICE 96.75
$(A \setminus A)$	· · · · · · · · · · · · · · · · · · ·
DESIGNER SIGNATURE	
1211	—— DATE 7/6/16
LICENSE# ////	DAIL 11 01 10
	1 1

Not B Saali

O, INTOURD SECTE MINISTER CENTRAL						Π		•	S\$8	2	,	8
(landslope greater than 1%)	1,1 /	Τ.			1000	no ablace	over 1	D. Di				
1. Downslope absorption width = absorption wi	ath (F)	/5	TO TAKE		. 4	05.00	- · ·	The same	6- To	opsoil	200
minus rock layer width (D2)			68	1, : 4. !		Clean	Sand	_ft		A CONTRACTOR		
24 ft - 10 ft = 14 ft			Separatio		_ft	Restrict	ing Layer		. ,		î T	
			Upslope	width (C	2d)	Rock Wie	dth(D2)	Dow	enslope Wi	dth(G2i)	H	
2. Calculate mound size						********	n n					
UPSLOPE			1		Î			Ê				
a. Depth of clean sand fill at upslope edge of					- 1	Sano	Absorp	tion Widtl	h - Sommilia.		L	
rock layer = 3 ft minus the distance to restricting	laye	r (C	1)			300.00	'	^/t				
3 ft - / ft = 2 ft		•	•									
b. Mound height at the upslope edge of rock	D-34	SLC	PE MUI	LTIPL	IER T	ABLE						
layer = depth of clean sand for separation (G2a)	Land	I	1	JPSLO1	PE				DO	WNSLO	PE	
at upslope edge plus depth of rock layer (1 ft)	Slope in %	-	multip	liers fo	r vario	ous :				pliers for lope rati		s
plus depth of cover (1 ft)		3:1	4:1	5:1	6:1	7:1	8:1	3:1	4:1	5:1	6:1	7:1
	0	3.0	4.0	5.0	6.0	7.0	8.0	3.0	4.0	5.0	6.0	7.0
ft + 1ft + 1ft =ft	1	2.91	3.85	4.76	5.66	6.54	7.41	3.09	4.17	5.26	6.38	7.53
c. Upslope berm multiplier based on land slope	2	2.83	(3.70)	4.54	5.36	6.14	6.90	3.19	(4.35)	5.56	6.82	8.14
3.7 (see figure D-34)	3	2.75	3.57	4.35	5.08	5.79	6.45	3.30	4.54	5.88	7.32	8.86
d. Upslope width = berm multiplier (G2c) x	4	2.68	3.45	4.17	4.84	5.46	6.06	3.41	4.76	6.25	7.89	9.72
upslope mound height (G2b):	5	2.61	3.33	4.00	4.62	5.19	5.71	3.53	5.00	6.67	8.57	10.77
$\frac{4}{3.7}$ ft = 15 ft	6	2.54	3.23	3.85	4.41	4.93	5.41	3.66	5.26	7.14	9.38	12.07
DOWNSLOPE	7	2.48	3.12	3.70	4.23	4.70	5.13	3.80	5.56	7.69	10.34	13.73
e. Drop in elevation = rock layer width (D2) x	8	2.42	3.03	3.57	4.05	4.49	4.88	3.95	5.88	8.33	11.54	15.91
percent landslope (C5) ÷ 100	9	2.36	2.94	3.45	3.90	4.30	4.65	4.11	6.25	9.09	13.04	18.92
$10 \text{ ft x } 2\% \div 100 = 12 \text{ ft}$	10	2.31	2.86	3.33	3.75	4.12	4.44	4.29	6.67	10.00	15.00	23.33
f. Downslope mound height = depth of clean	ц	2.26	2.78	3.23	3.61	3.95	4.26	4.48	7.14	11.11	17.65	30.43
sand for slope difference (G2e) at downslope	12	2.21	2.70	3.12	3.49	3.80	4.08	4.69	7.69	12.50	21.43	43.75
rock edge plus the mound height at the												
upslope edge of rock layer (G2b)	œ											
$\frac{4}{1}$ ft + $\frac{1}{12}$ ft = $\frac{4.2}{1}$ ft												
g. Downslope berm multiplier based on percent	land	slc										
<u>4.35</u> (see figure D-34)				-	†		jano	1				
h. Downslope width = downslope multiplier	٦Ï					Upslop	e Widt	h(G2d)				
(G2g) times downslope mound height (G2f)	11	6.00	J								sand	
4.35x 4.2 ft = 18 ft	੍ਰੀ ⊍ps	SUL lope V	vidth(G2d	1)	•	Rock Width	1(D2) _			Upslo	pe Widi	th(G2d)
i. Select the greater of G1 and G2h as the	AC TAC TOTAL WIGHT (822)	'		-	_	Lengt	h(D3)_			*		
downslope width:ft	- Ota				Downs	slope Wic			_ft			
j. Total mound width is the sum of upslope	3		15	. '	Arbsor	ption-Wie	101(1-)		[
width (G2d) width plus rock layer width	2			ļ					OW2			
(D2) plus downslope width (G2i)			5	and	То	tal Lengti	h (G2k)		ft			
10 ft + 18 ft + 15 ft = 43 ft												
k. Total mound length is the sum of upslope wich	lth (C	G2d)									
plus rock layer length (D3) plus upslope width (C												
38 ft + 17 ft + 15 ft = 68 feet							->;=10001=	NAME OF TAXABLE PARTY.	-	- Tree		
			Fi	nal	D	ime	ens	ion	ıs:			
								and the	LD•			
				4-	3	_ x		20				
		_			-		io, est	Opposite the last of the last	-			_
I hereby certify that I have completed this work in accordan	ice w	ith a	pplical	ble o	rdin	ances.	rules	and l	aws.			1
Thereby certify that I have completed this work in accordan		.0-	. /				1,	1,1				
(signature)	//	17/4	1_(li	icens	e #)	7	161	1/6	(date)		1

INTO DIATA DECLE MITATIF OF PERIORIE

- ÷1.
- 2. Select perforation spacing = 3 ft
- 3. Since perforations should not be placed closer than 1 foot to the edge of the rock layer (see diagram), subtract 2 feet from the rock layer length.

 $\frac{38}{\text{Rock layer length}} - 2 \text{ ft } = \frac{36}{12} \text{ ft}$

Determine the number of spaces between perforations. Divide the length (3) by perforation spacing (2) and round down to nearest whole number.

Perforation spacing = $\frac{3}{12}$ ft ÷ $\frac{36}{12}$ spaces

Number of perforations is equal to one plus the number of 5. perforation spaces(4). Check figure E-4 to assure the number of perforations per lateral guarantees <10% discharge variation.

12 spaces + 1 = 13 perforations/lateral

A. Total number of perforations = perforations per lateral (5) 6. times number of laterals (1)

 $\frac{13}{\text{perfs/lat x}}$ perforations

B. Calculate the square footage per perforation.

Should be 6-10 sqft/perf. Does not apply to at-grades.

Rock bed area = rock width (ft) x rock length (ft)

10 ft x 38 ft = 380 sqft

Square foot per perforation = Rock bed area ÷ number of perfs (6)

380 sqft ÷ 39 perfs = 9 sqft/perf

7. Determine required flow rate by multiplying the total number of perforations (6A) by flow per perforation (see figure E-6)

74 perfs x 39 gpm/perfs = 28.9 gpm

- 8. If laterals are connected to header pipe as shown on upper example, to select minimum required lateral diameter; enter figure E-4 with perforation spacing (2) and number of perforations per lateral (5) Select minimum diameter for perforated lateral = 1 inches.
- If perforated lateral system is attached to manifold pipe near the center, lower diagram, perforated lateral length (3) and number of perforations per lateral (5) will be approximately one half of that in step 8. Using these values, select minimum diameter for perforated lateral = _____inches.

Perf Sizing 3/16" - 1/4" Perf Spacing 1.5'- 5'

E-4: Maximum allowable number of 1/4-inch perforations per lateral to guarantee <10% discharge variation

perforation spacing				
(feef)	1 inch	1.25 inch	1.5 inch	2.0 inch
2.5	8	14	18	28
3.0	8	13	17	26
3.3	7	12	16	25
4.0	7	11	15	23
5.0	6	10	14	22

E-6: Perforation Discharge in gpm								
perforation diameter (inches)								
(feet)	1/8 3/16 7/32 1/4							
1.00	0.18	0.42	0.56	0.74				
2.0 ^b	0.26	0.59	0.80	1.04				
5.0 0.41 0.94 1.26 1.65								
^a Use 1.0 foot for single-family homes. ^b Use 2.0 feet for anything else.								

MANIFOLD LOCATED AT END OF PRESSURE DISTRIBUTION SYSTEM

hereby certify that I have completed this work in accordance with applicable ordinances, rules and laws. (signature) 1174 (license #)

LOCAL UNIT OF GOVERNMENT: APPROVED

For: Brent Welk Date: 7/6/2016	Designer Name: Enter Company Name DRP: Enter Company DRP MPCA License No:			
Job Address:	Legal Description:			
62612 Osprey AV	Macville,			
Delivery, Soils, and Site Information Landslope:	System Type: Standard			
Flow Rate: 450 GPD Percolation Rate:	Structure Type: Residential MPI Construction Type: Residential			
	Construction Type: Existing			
	12 In Soil Texture: Silt Loam			
	No Soil Structure: Spheroidal			
Lift Station Capacity: 1000 Gal Raw Sewage Pump:	No Soil Structure Grade: Moderate			
System Design Specifications	Absorbtion Width Ratio: 2			
Clean Sand SSF: 0.83 GPD / Sq Ft	Absorbtion Width: 20 Ft			
	ound Width (Slopes less than 1%) OR ownslope Width (Slopes 1% or more): 10 Ft			
Rockbed Length: 38 Ft	Clean Sand Upslope: 24 In			
Rock Volume	Mound Height Upslope: 4 Ft			
	Upslope Berm Ratio: 4 Ft			
Cubic Feet: 380	Upslope Berm Width: 15 Ft			
Cubic Yards: 14	Elevation Drop: 0.2 Ft			
Tonnage: 20	Mound Height Downslope: 4.2 Ft			
Washed Sand Volume: 169 Cu Yds	Downslope Berm Ratio: 4 Ft			
Fill Cover Volume: 74 Cu. Yds	Downslope Berm Width: 18 Ft			
Topsoil Volume: 130 Cu. Yds	Actual Mound Width: 43 Ft			
Linear Loading Rate: 12 GPD / Ft	Actual Mound Length: 68 Ft			
Pump Capacity	Pump Head			
Number of Laterals: 3	Elevation Difference -			
Lateral Diameter: 1.5 In	Pump to Discharge Point: 8 Ft			
Perforation Diameter: 0.25 In	Total Pipe Length: 30 Ft			
Perforation Spacing: 3 Ft	Pipe Diameter: 2 In			
Perforation Head: 1 Ft	Friction Loss Per Foot: 1.7			
Perforation GPM: 0.74 Ft	Total Friction Loss: 0.6 Ft			
Perforations Per Lateral: 13	Manifold Location: End			
Maximum Perforations / Lateral: 17	Total Head: 13.6 Ft			
Total Perforations: 39				
Lateral Length: 36 Ft				
Pump Capacity: 28.9 GPM				

ADDITIONAL INFORMATION NEEDED

DESIGN WORKSHEETS REQUIRED

MOUND CROSS-SECTION

LOCAL UNIT OF GOVERNMENT: APPROVED

For: Brent Welk Date: 7/6/2016				Designo	er Name: Enter Compar DRP: Enter Compar			
Date. 7/0/2010			N	MPCA Lic		ly DKI		
Job Address:			Le	gal Descr	iption:			
62612 Osprey AV								
				Macville,				
Delivery, Soils, and Site In	formation		1		System Type:	Stand	ard	
·	_	Landslope:	2	%	Structure Type:			
Flow Rate: 450		Percolation Rate:		MPI	Construction Type:	Existi	ng	
Septic Tank 1 Capacity: 125		Restrict Layer Depth:	12	In	Soil Texture:	Silt L	oam	
Septic Tank 2 Capacity:	Gal	Garbage Disposal:	No		Soil Structure:	-		
Lift Station Capacity: 100	0 Gal	Raw Sewage Pump:	No		Soil Structure Grade:	Mode	rate	
System Design Specification	ons			Α	Absorbtion Width Ratio	2		
Clean Sand SSF: 0	.83 GPD / S	Sq Ft			Absorbtion Width:	20	Ft	
Rock Area: 3	880 Sq Ft			•	opes less than 1%) OR			
Rockbed Width:	10 Ft	Minimum D	owns	lope Widt	th (Slopes 1% or more):	10	Ft	
Rockbed Length:	38 Ft				Clean Sand Upslope:	24	In	
Rock Volume				Ŋ	Mound Height Upslope:	4	Ft	
Cubic Feet: 3	880				Upslope Berm Ratio:	4	Ft	
	14				Upslope Berm Width:	15	Ft	
	20				Elevation Drop:	0.2	Ft	
					und Height Downslope:	4.2	Ft	
	69 Cu Yds				Downslope Berm Ratio:	4	Ft	
	4 Cu. Yds			D	ownslope Berm Width:	18	Ft	
•	30 Cu. Yds				Actual Mound Width:	43	Ft	
Linear Loading Rate: 1	2 GPD/F				Actual Mound Length:	68	Ft	
Pump Capacity				Pump.	Head			
Number of Later					vation Difference -			
Lateral Diame		In		Put	np to Discharge Point:	8	Ft	
Perforation Diame		In			Total Pipe Length:	30	Ft	
Perforation Spac	-	Ft			Pipe Diameter:	2	In	
Perforation He		Ft			Friction Loss Per Foot:	1.7		
Perforation Gl		Ft			Total Friction Loss:	0.6	Ft	
Perforations Per Late					Manifold Location:	End		
Maximum Perforations / Late					Total Head:	13.6	Ft	
Total Perforation	ons: 39							
Lateral Len	•	Ft						
Pump Capac	city: 28.9	GPM						
Comments: Number of bedr	ooms: 3. Ins	tall under dry conditions	. Ve	rify pumn	head before installing s	vstem		
		,	. •	A 1		,		

ADDITIONAL INFORMATION NEEDED

DESIGN WORKSHEETS REQUIRED

MOUND DESIGN WORK SHEET (For Flows up to 1200 gpd)

A.	Average	Design	FLOW
	_ ,	0	

Estimated 450 gpd (see figure A-1) or measured x = 1.5 (safety factor) = x = 20

B. SEPTIC TANK Capacity

/000 gallons (see figure C-1)

C. SOILS (refer to site evaluation)

- Depth to restricting layer = ______ feet
 Depth of percolation tests = _____ feet
- Texture 5,74 Loan
- Percolation rate _____ mpi
 Soil loading rate ____, 5 o ___gpd/sqft (see figure D-33) 4.
- Percent land slope _____2_ 5.

A-1: Estimated Sewage	Flows in Gallons per Day

Class I	Class II	Class III	Class IV
300	225	180	`60%
450	300	218	of the
600	375	256	values
750	450	294	in the
900	525	332	Class I,
1050	600	370	II, or III
1200	675	408	columns.
	300 450 600 750 900 1050	300 225 450 300 600 375 750 450 900 525 1050 600	300 225 180 450 300 218 600 375 256 750 450 294 900 525 332 1050 600 370

C-1: Septic	Tank Capacities (in	gallons)	
Number of Bedrooms	Minimum Liquid Capacity	Liquid capacity with garbage disposal	Liquid capacity with disposal& lift inside
2 or less 3 or 4 5 or 6 7, 8 or 9	750 i000 1500 2000	1125 1500 2250 3000	1500 2000 3000 4000

< 120 MPI

> 120 MPI

D. ROCK LAYER DIMENSIONS

1. Multiply average design flow (A) by 0.83 to obtain required rock layer area.

 $\frac{450}{\text{gpd}} \times 0.83 \text{ sqft/gpd} - \frac{380}{\text{sqft}} \text{ sqft}$

2. Determine rock layer width = 0.83 sqft/gpd x linear Loading Rate (LLR) 0.83 sqft/gpd x 450 gpd/sqft = 50/0 ft Mound LLR

3. Length of rock layer = area + width =

380 sqft (D1) ÷. 10 ft (D2) = 38 ft

E. ROCK VOLUME

1. Multiply rock area (D1) by rock depth of 1 ft to get cubic feet of rock

380 sqft x 1 ft = 380 cuft

2. Divide cuft by 27 cuft/cuyd to get cubic yards $cuft \div 27 \text{ cuyd/cuft} = 14 \text{ cuyd}$

3. Multiply cubic yards by 1.4 to get weight of rock in tons

 $_{\text{cuyd}} \times 1.4 \text{ ton/cuyd} = _{\text{20}} \text{ tons}$

F. SEWAGE ABSORPTION WIDTH

Absorption width equals absorption ratio (See Figure D-33) times rock layer width (D2)

Percolation Rate in Minutes per Inch (MPI)	Soil Texture	Loading Rate Gallons per day per square foot	Absorption Ratio
Faster than 5	Coarse Sand Medium Sand Loamy Sand Fine Sand	1.20	1.00
6 to 15	Sandy Loam	0.79	1.50
16 to 30	Loam	0.60	2.00
31 to 45	Sin Loam Sin	0.50	2.40
46 to 60	Sandy Clay Loam Silty Clay Loam Clay Loam	0.45	2.67
61 to 120	Silty Clay Sandy Clay Clay	0.24	5.00
Slower than 120*			

≤12

≤6

Customer Name: Brent Welk
Date:

Date:

Brent Welk
Date:

Brent Welk
Date:

DRP: Enter Company DRP

MPCA License No:

Legal Description:

62612 Osprey AV

Macville,

Macville,

Site Elevations

enchmark: top of meter box	Transit Read	ling:	3.42 Ft	Elevation:	100	F
Description	Reading (Ft)	Elevati	on (Ft)			
BM: top of meter box	3.42	10	00			
ground at pole	8	95.	42			
drive way height	6.08	97.	34			
Ex slap	6.83	96.	59			
surface at tank	9.17	94.	25			
liquid level in tank	11.17	92.	25			
boring #2	10.25	93.	17			
Soil Boring One	9.23	94.	19			
center of garage grade area	8.55	94.	87			

Site Slopes

Description	Distance (Ft)	Drop (Ft)	Slope (%)
surface at tank to boring #2	60	1.1	1.8
drive way height to center of garage grade area	100	2.5	2.5

PUMP SELECTION PROCEDUKE

1. Determine pump capacity:

A. Gravity distribution

- 1. Minimum required discharge is 10 gpm
- 2. Maximum suggested discharge is 45 gpm. For other establishments at least 10% greater than the water supply rate, but no faster than the rate at which effluent will flow out of the distribution device.

B. Pressure distribution

See pressure distribution work sheet

From A or B Selected pump capacity: 28.9 gpm

2.	Determine	pump	head	requir	ements:
----	-----------	------	------	--------	---------

		_	-	-		
A.	Elevation	difference	between j	pump and	point of	discharge?
		foot				

B. Special head requirement? (See Figure at right - Special Head Requirements)

_____feet

C. Calculate Friction loss

1. Select pipe diameter _____in

2. Enter Figure E-9 with gpm (1A or B) and pipe diameter (C1).

Read friction loss in feet per 100 feet from Figure E-9 Friction Loss = $\frac{1.5}{100}$ ft/100ft of pipe

3. Determine total pipe length from pump discharge to soil treatment discharge point. Estimate by adding 25 percent to pipe length for fitting loss. Total pipe length times 1.25 = equivalent pipe length
30 feet x 1.25 = 37.5 feet

4. Calculate total friction loss by multiplying friction loss (C2) in ft/100 ft by the equivalent pipe length (C3) and divide by 100.

= 37.5 ft/100ft x /. 5 ÷100 = /.7 ft

D. Total head required is the sum of elevation difference (A), special head requirements (B), and total friction loss (C4)

5 ft + 1.7 ft + 8 ft =

Total head: ______feet

Pump selection

A pump must be selected to deliver at least 30 gpm (1A or B) with at least 15 feet of total head (2D)

Special Head Requirements	
Gravity Distribution	0 ft
Pressure Distribution	

2A. elevation

difference

total pipe length

inlet-

pipe

soil treatment system & point of discharge

E-9: Friction Loss in Plastic Pipe					
	Per 100 feet				
flow rate		nominal e diame 2"	eter 3"		
20	2.47	0.73	0.11		
25	3.73	1.11	0.16		
30	5.23	(1.55)	0.23		
35	6.96	2.06	0.30		
40	8.91	2.64	0.39		
45	11.07	3.28	0.48		
50	13.46	3.99	0.58		
55		4.76	0.70		
60		5.60	0.82		
65		6.48	0.95		
70		7.44	1.09		

I hereby certify that I have completed this work in	accordance with ap	plicable ordinar	nces, rules and laws.	
(signate	re) //74	(license #)	7/6/16 (date)	

PERMIT NUMBER 42121	PARCEL NUMBER 20-0-011801		
Location N 1/2 OF NW-NW Lot Block Gov't. L	ot Section Twp. Rge.		
Issued July 6, 2016 To Brent Nature of Authorization 3-bedroom Mau	nd septic system		
New Construction Alteration Sewer Installation Flood Plain and Lowest Floor Elev	NOTE: This permit must be posted in a conspicuous place on premises on which work is to be done and remain until work has been completed and inspected.		
This permit expires one year from date of issuance NOT TRANSFERABLE	ZONING ADMINISTRATOR		

No Portion of any Sewage Disposal System shall be Covered Prior to Inspection.

AITKIN COUNTY CERTIFICATE OF INSTALLATION/NOTICE OF NONCOMPLIANCE

This certificate of installation/notice of noncompliance has been issued this, 20_1 20_1 to certify compliance noncompliance with Aitkin County's Subsurface Sewage Treatment System Ordinance.				
The premises covered by this certificate are legally described as:				
Section 8 Township 51 Range 21 Lake PERMIT NO. 43131 Owner Name Breat 45 July Welk Address 62113 Deprey Ave Suntary March 1998 Installer Name Dave 1 Ave Suntary March 1998 Type of System Inspected 3 Section Mount - Type I Parcel Number 20-0-01861				
 The certificate of installation/notice of noncompliance was based on No of the following: Inspection of the installation or construction as in accordance with the above referenced permit and application design. Review of as-built plans submitted in accordance with Subdivision 9.2 D of 				
Aitkin County's Subsurface Sewage Treatment System Ordinance. If the above permitted subsurface sewage treatment system is in noncompliance with Aitkin County's Subsurface Sewage Treatment System Ordinance, then the following shall serve as a Notice of Violation: 1) Statement of the findings of fact through inspections or investigations:				
2) List of specific violations of Ordinance:				
3) Requirements for correction or removal of violations:				
4) Time schedule for compliance:				
Failure to correct or remove the above violation(s) will result in this matter being turned over to the Aitkin County Attorney's Office for further legal action, which may result in revocation of licenses or registrations, fines and/or imprisonment.				
INSPECTOR SIGNATURE Laurak				

INDIVIDUAL SEWAGE TREATMENT SYSTEM INSPECTION FORM AITKIN COUNTY, MINNESOTA

AITKIN COON	11, WINNESOTA 11-3-16
	11-3-16 N 8-25-16 Final Permit Number 42121
Owner Boen + Shelly welk	Parcel Number <u>20-0-011801</u>
Project Address 62612 Osprey Ave	Installer Longe
City Swatara Zip Code 557	•
New Repair	DIST. or DROP BOX & TYPE
SETBACKS:	TRENCHES, BEDS, OR GRAVELLESS LEACHFIELD:
Buildings to tank(s) 55	Trench depth
Buildings to drainfield >70	Trench length
Well(s) 50' or 100' > 1 > 1	Trench bottom width
Lake/Creek/Wetland	Trench spacing
	Drainfield rock below pipe
SEPTIC TANKS: New Existing X	Size of gravelless pipe
Number of tanks installed	Depth of backfill
Liquid capacity and type	Absorption area: square feet
Type of baffle Plastic	lineal feet
Inspection pipes 1-411	MOUNDS:
Manholes size 1-24'	Percent slope 2. %
Manhole to grade Yes X No	Upslope dike width 15
-	Downslope dike width 18'
PUMPS: New Existing	Sideslope dike width 15'
	Drainfield rock below pipe 9''
Pump manufacturer & model # Zoelles 98	Depth of sand below rock 2
Horsepower & GPM _ 5 × 350	Perforation size & spacing 1/4 × 3
Feet of head 15	Pipe size & spacing 11/2 x 3
Gallons per cycle 125	Dimensions of rock bed 10 % 3 8
Size of discharge line 2'	Dimensions of sand base 43x48
Type & location of alarm Eisc at Tank	Final cover 12"5: 8e/En 18" TOD
Water meter	
DRAWING OF SYSTEM: (include soils)	
o ₹ *	
· AC	
Court	
_	
Car.	11 a 9x
	ist, No yew
	00 000
	20 200
o well	
0.00	
	¥
Inspector's Comments:	
	4\//
Inspector's Signature	Installer's Signature

White - County Yellow - Applicant

Pink - Installer

Rev:1/13